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Prediction-Based Multi-Agent Reinforcement Learning in Inherently
Non-Stationary Environments

ANDREI MARINESCU, IVANA DUSPARIC, and SIOBHÁN CLARKE, Trinity College Dublin

Multi-agent reinforcement learning (MARL) is a widely researched technique for decentralised control in
complex large-scale autonomous systems. Such systems often operate in environments that are continuously
evolving and where agents’ actions are non-deterministic, so called inherently non-stationary environments.
When there are inconsistent results for agents acting on such an environment, learning and adapting is
challenging. In this article, we propose P-MARL, an approach that integrates prediction and pattern change
detection abilities into MARL and thus minimises the effect of non-stationarity in the environment. The en-
vironment is modelled as a time-series, with future estimates provided using prediction techniques. Learning
is based on the predicted environment behaviour, with agents employing this knowledge to improve their
performance in realtime. We illustrate P-MARL’s performance in a real-world smart grid scenario, where the
environment is heavily influenced by non-stationary power demand patterns from residential consumers. We
evaluate P-MARL in three different situations, where agents’ action decisions are independent, simultane-
ous, and sequential. Results show that all methods outperform traditional MARL, with sequential P-MARL
achieving best results.
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1. INTRODUCTION

Advances in multi-agent algorithms have enabled large-scale systems to perform
complex tasks without requiring human assistance [Huebscher and McCann 2008].
Multi-agent systems (MAS) comprise multiple autonomous entities, known as agents,
and can be used to solve problems in a distributed manner when centralised control
becomes infeasible. Often, system autonomy is achieved by agents continuously
learning from their interaction with the environment and each other rather than
relying on predefined behaviours [Stone and Veloso 2000]. One commonly-used
computational approach to learning is reinforcement learning (RL) [Sutton and Barto
1998]. Agents in Multi-agent RL (MARL) systems learn suitable actions by trial and
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error, interacting with their environment to reach their goal, which is to maximise
their cumulative rewards (i.e., the total reward they receive in the long run [Sutton
and Barto 1998]), and can achieve this by collaborating with other agents.

However, an environment in which agents operate can be non-stationary, i.e., it might
evolve so that selected actions have an effect different from the previously learned one.
Once previously unencountered situations occur, agents need to re-restart the learn-
ing process (i.e., re-learn) in order to learn the new suitable actions to adapt to new
situations, performing sub-optimally while doing so. Our hypothesis is that prediction
of future environment behaviour can provide agents with a sufficiently good a pri-
ori training model for off-line learning to improve their performance in online mode
[Dusparic et al. 2013]. This article proposes Predictive-MARL (P-MARL), a MARL
technique augmented with environment prediction and pattern change detection ca-
pabilities to counter inherently non-stationary environments that can be described as
a time series. We demonstrate the implementation of P-MARL in a smart grid case
study, with non-stationary energy usage patterns. We show that P-MARL obtains im-
proved performance over traditional MARL by using environment forecasts to prepare
for upcoming changes.

The rest of this article is organised as follows: Section 2 introduces RL and reviews
existing work of MARL in non-stationary environments. Section 3 presents P-MARL,
our proposed approach for optimisation in non-stationary environments. Section 4
describes the application of P-MARL in a smart grid case study, while Section 5 presents
and analyses the results obtained by our approach. Finally, Section 6 presents our
concluding remarks and avenues for future work.

2. BACKGROUND AND RELATED WORK

2.1. Reinforcement Learning

Reinforcement learning (RL) is a computational approach to learning from interaction
with the environment that enables an agent to learn how to perform well in an unknown
environment through a process of trial and error [Sutton and Barto 1998]. A reward is
provided to the agent for each action taken in a given state. This process is pictured as
a Markov Decision Process (MDP) in Figure 1, where x is the state of the environment,
s is the state of the agent, a is the action taken by the agent, and r is the reward
received. The values in the brackets represent the timestep (e.g., s(t − 1) is the state s
at timestep t−1). The next state depends only on the agent’s current state s and action
a, and not on any previous actions taken or states encountered; this is known as the
Markov property. Even though some immediate actions may lead to higher rewards
than others, an agent’s goal is to maximise its long term reward. An agent needs to
explore all states and actions combinations in order to learn the highest rewarding
sequence of actions that can be taken from a particular state. This sequence is known
as the agent’s policy. RL agent performance is optimised once sufficient exploration
through different states and actions is performed.

There are two main types of RL methods: ones that use models of the environment
and rely on planning, called model-based (e.g., Dyna-Q [Sutton 1990]), and ones that
learn through trial and error, called model-free (e.g., Q-learning [Watkins and Dayan
1992]).

If external changes occur in an environment, it will react differently to an agent’s
actions; therefore, an agent’s learned information can become outdated. In such cases,
we say that the environment is non-stationary. When an environment in which an
agent is acting is non-stationary, an agent needs to re-learn in order to adapt to the
new changes.

Model-based RL approaches use experience to model the environment’s reaction to
an agent’s actions, and thus, agents are able to implement strategies based on the
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Fig. 1. RL: Agent and Stationary Environment. Fig. 2. RL: Agent and Non-Stationary Environ-
ment.

developed model to maximise their performance. However, when the environment is
inherently non-stationary, the accumulated experience becomes misleading, even if the
Markov property holds. Agents need to acquire new experience in order to learn a new
model, and while doing so, the system underperforms. Model-free RL is not held back
by an inaccurate model of the environment and does not need to accumulate experience
for modelling it; however, it will still perform sub-optimally throughout the learning
stage.

2.2. MARL in Non-Stationary Environments

When several RL agents interact within the same environment, the single agent RL
problem is extended to MARL. However, when such multiple self-interested learning
agents interact with each other, the result of their actions on the environment becomes
non-stationary, as each agent acts in a non-stationary manner during the learning
process (i.e., while it is trying different actions in the same state). In addition, non-
stationarity in the environment can arise independently from agents’ behaviours, i.e.,
through independent changes in environment variables. Therefore, non-stationarity in
MARL can arise for two reasons:

A. Agent-contributed non-stationarity: several agents are simultaneously exploring
within the same environment; therefore, the effect of their individual actions is
non-deterministic since the environment reacts differently for each combination of
actions.

B. Environment-induced non-stationarity: the environment continuously evolves by
itself; therefore, the result of agents’ actions are also affected by the evolution of
the environment independent from agents’ actions. Figure 2 illustrates how this
affects the typical RL process (Section 2.1) from an MDP perspective, where en-
vironment state x(t) is now also influenced by the non-stationary component ε(t),
which represents the non-stationary independent evolution of the environment.

Techniques that address agent-contributed non-stationarity mostly focus on mod-
elling other agents’ behaviours in order to predict their actions and their joint impact on
the environment [Claus and Boutilier 1998; Hu and Wellman 2003; Shoham et al. 2003;
Laumônier and Chaib-draa 2005; Elidrisi et al. 2014; Hernandez et al. 2013]. However,
modelling the behaviour of an opponent is not feasible in complex non-stationary en-
vironments, where many agents act upon the environment and the effect of a single
agent is not transparent.

In situations where the environment itself is complex and non-stationary, agents’
learning cannot converge to stationary policies; therefore, gaining knowledge about
the environment can be key to successful implementation of MARL [Klügl et al. 2005].
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Techniques that consider non-stationary environments do so by creating partial models
of the environment [Doya et al. 2002; Choi et al. 2001]. However, these do not address
continuously evolving environment dynamics, where previously defined models are not
reliable. RL with Context Detection (RL-CD) [Silva et al. 2006] attempts to address en-
vironment dynamics with a context detection-based approach that builds on multiple
partial models. Multiple models are continuously evaluated against a specific environ-
ment dynamic, and the model performing best is chosen to further dictate actions. If no
model performs satisfactorily, RL-CD triggers learning a new model for the particular
environment dynamics. The new model is triggered only when an agent consistently
performs sub-optimally. In SOILSE [Salkham and Cahill 2010], fluctuations in en-
vironment behaviour are continuously monitored by a moving average filter. Once a
change is detected, SOILSE’s learning parameters are changed in order to allow agents
to adapt to the new conditions.

In each of these solutions, the system needs to explore the suitability of actions
while learning. Overall system performance is affected during this time, which is not
suitable in many real-world applications such as industrial processes or vehicular
traffic. Training offline can improve performance [Tesauro et al. 2006] but is directly
affected by the quality of information provided. Such information can be provided by
using prediction, as discussed next.

2.3. Prediction in Non-Stationary Environment

P-MARL is aimed at non-stationary environments whose behaviour can be modelled
as a time series, and as such can benefit from advanced time-series analysis tech-
niques. Such environments can be found in financial markets (e.g., predicting stock
trends, detecting financial market meltdowns), meteorology (e.g., detecting seasonality
in weather patterns), process monitoring (e.g., detecting abnormal operating perfor-
mance), control engineering (e.g., load balancing based on model predictive control),
signal processing, and electric energy consumption (e.g., estimating future energy needs
of end-users). A time series is a discrete sequence of points set at fixed time intervals
whose values represent successive measurements of a specific variable. This variable,
denoted here as property x of an environment behaviour over an interval of length t,
can be defined as (x1, x2, . . . , xi, . . . , xt), where xi is the measurement of the property
x taken at time i. Widely-used approaches for predicting future values of time series
(from the example, values xt+1, xt+2, . . .) include statistical auto-regressive methods
[Box and Jenkins 1970], Artificial Neural Networks (ANNs) [Zhang et al. 1998], and
fuzzy logic [Brown and Harris 1994].

Statistical auto-regressive methods are established methods for time-series predic-
tion in weakly stationary or non-stationary time series, with the auto-regressive mov-
ing average (ARMA) model being first introduced [Whittle 1951], and later popularised
together with auto-regressive integrated moving average (ARIMA) as Box-Jenkins ap-
proaches [Box and Jenkins 1970]. The models analyse random processes and linearly
relate the output of the prediction system based on previous values of the time se-
ries. The series is decomposed through a formula that relates individual coefficients
with the former chosen n values. ARMA and ARIMA additionally have a moving aver-
age part where another set of coefficients is considered for the moving average model
component. While ARMA can be used with weak-stationary systems, ARIMA applies
differencing on a non-stationary time series, thus removing the non-stationary compo-
nent and treating the result as stationary.

While directly predicting future behaviour can be very efficient, most successful
techniques combine several methods to improve overall results. Among them, one of
the most noticeable and effective additions is the classification of historical behaviour
into different sets, generally accomplished using self-organising maps (SOM) [Kohonen
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Table I. Adaptation Under Environment-Induced Non-Stationarity

Previously encountered dynamics New dynamics

Behaviour
Change

Detection

Detected through change in rewards
[Choi et al. 2001; Doya et al. 2002]

RL-CD: Uses memory for known
models, learns new models online

[Silva et al. 2006]
SOILSE: Trigger re-learning when

change detected [Salkham and Cahill
2010]

Behaviour
Prediction

Memory-based approaches (keep
previous models of environments and

switch based on change in reward)
[Choi et al. 2001; Doya et al. 2002]

X

1990], k-means clustering [Hartigan and Wong 1979], or support vector machines
[Cortes and Vapnik 1995]. These techniques rely heavily on past behaviour, but key
environmental variables (i.e., factors that impact the behaviour of the environment,
such as the passing of a cloud affecting the current temperature) can also play an
important role. Monitoring the key variables can help estimate future changes in the
environment.

So far, as presented in Section 2.2, most of the focus in MARL has been on pre-
dicting agent behaviour instead of environment behaviour. In this article, the main
contribution stems from the use of advanced prediction techniques for determining
future non-stationary environment behaviour in the learning process of MARL. Pre-
vious methods that include environment-related information in MARL only address
change-detection, but not future behaviour prediction, i.e., they do not provide any
information about the future evolution of the environment when it evolves towards
previously unencountered situations.

2.4. Requirements for MARL in Non-Stationary Environments

A summary of the state-of-the-art in non-stationary environments is presented in
Table I. Current optimisation techniques are designed to address previously encoun-
tered environment dynamics; agents can only adapt to new environment dynamics by
learning online (e.g., RL-CD, SOILSE), and have no means to predict the behaviour
of new environment dynamics or pretrain for it. To address these limitations, without
losing any of the functionalities current techniques can provide, a multi-agent system
deployed in non-stationary environments should:

—Req. 1 support agents taking optimal actions in the current environment state (i.e.,
fulfil the basic MARL requirement of learning optimal actions);

—Req. 2 detect environment behaviour changes;
—Req. 3 predict environment behaviour: if a change in environment behaviour is

detected, it should identify the type of change occurring, and re-predict the environ-
ment’s future dynamics;

—Req. 4 support agents pretraining (i.e., learning offline) for possible future environ-
ment dynamics even if these have not been encountered previously.

In the next section, we describe P-MARL’s design and how it meets these require-
ments.

3. P-MARL

P-MARL’s goal is to improve MARL performance when the environment is continuously
evolving and learned information becomes outdated. Unlike solutions that react after
changes in the environment are detected (e.g., RL-CD and SOILSE), P-MARL allows
agents to adapt to new situations, minimising underperformance that might arise
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from such outdated learned information. By predicting future environment behaviour,
agents can learn optimal policies offline, using a simulation of the environment. This
is a key difference from RL-CD, which is model-based, i.e., it learns a new model at
runtime, and therefore performs sub-optimally while doing so. In P-MARL, agents are
better prepared to handle upcoming changes in the runtime environment after training
in a simulated environment, before applying this synthetic knowledge at runtime.

Our solution employs multiple autonomous RL agents, and is, therefore, a decen-
tralised approach. Centralised solutions to multi-agent optimisation in resource allo-
cation problems are not feasible, as the time needed to solve a problem grows expo-
nentially with the number of agents involved [Busoniu et al. 2008]. Furthermore, such
solutions rely on one unit, with corresponding single point of failure issues. In P-MARL,
agents are agnostic with respect to from where the prediction comes. Depending on the
scale and communication capabilities of the underlying system, it is possible to perform
simulations/predictions centrally, on a dedicated agent, or on any of the participating
agents, or have multiple agents take responsibility for their sub-regions.

3.1. P-MARL Design

P-MARL uses a reinforcement learning algorithm known as Q-Learning [Watkins and
Dayan 1992], which was chosen for its simplicity as it does not require predefined
models of the environment. Q-Learning is formally defined as:

Q(st, at) ← Q(st, at) + α
[
rt+1 + γ max

a
Q(st+1, a) − Q(st, at)

]
, (1)

where Q(st, at), the Q-value, is the expected discounted reward in state st after taking
action at and following a certain policy afterwards [Watkins and Dayan 1992], α is the
learning rate, rt+1 is the immediate reward received at the next timestep for taking
action at in state st, γ is the discount factor, and maxa Q(st+1, a) is the maximum ex-
pected Q-value that can be achieved from state st+1 after taking an action a. The two
parameters α and γ influence how much the algorithm learns from new experience
and how much weight a delayed reward holds, respectively. In this article, we use the
classical tabular format of Q-learning, based on Equation (1), where the Q-value of each
state-action combination is stored in a table. Furthermore, we also employ softmax ac-
tion selection [Sutton and Barto 1998], where the RL algorithm gradually moves from
exploration to exploitation as a parameter entitled temperature is decremented. When
the temperature is high, actions are almost equiprobable, but as the temperature value
decreases, softmax action selection becomes similar to greedy selection.

In Q-Learning with softmax action-selection, once an agent moves towards the ex-
ploitation stage, it attempts to maximise its overall reward (i.e., Q-Value) by choosing
the most long-term rewarding action from state st. Once sufficient exploration is per-
formed, action at is considered to be the optimal action from this state. In the case of
stationary environments, the transition to state st+1 is a function f of the action taken
at time t, assuming that we already are in a known state st:

st+1 = f (st, at) (2)

In a non-stationary environment where a change has just occurred, an agent takes
action at in state st, expecting to maximise its long term reward by moving into state
st+1. We consider a fully observable environment at state st, therefore, within the MDP
framework, but which, at the same time, has a non-stationary evolution and there-
fore is non-deterministic. Environments that are not fully observable should be ad-
dressed under the POMDP (Partially Observable Markov Decision Process) framework
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[Kaelbling et al. 1998].1 Since the environment considered in this article is non-
stationary, it influences the result of action at, and the new state reached is instead
s′

t+1. Therefore, s′
t+1 is a function of both the agent’s action and the environment’s

independent behaviour:

s′
t+1 = f (at, xt+1) (3)

Thus, value xt+1 affects the outcome s′
t+1 together with action at. In stationary envi-

ronments, xt+1 can be learned and integrated in the rewarding scheme, so Equation (3)
can be reduced to Equation (2). However, when the environment changes, the pre-
viously integrated value xt+1 can be radically different from the actual state of the
environment. In this case, action at can lead towards a sub-optimal state with a dif-
ferent reward than expected, so Q-values need to be readjusted. In such situations,
further exploration is needed for the Q-Values to be re-learned until an optimal set
of actions is found again. Here, environment evolution needs to be taken into account
separately to improve the agent’s performance. As such, in an environment defined as
time series, we have:

xt+1 = x̄t+1 + εt+1, (4)

where x̄t+1 is the already integrated value in Q-Learning, and εt+1 is the difference
between the integrated value of the environment and the one actually occurring due to
the environment’s independent evolution. From Equation (3) and Equation (4), we can
deduce that:

s′
t+1 = f (at, x̄t+1 + εt+1), (5)

where εt+1 impacts the time-series evolution as well. However, since εt+1 is a scalar
value, as we are addressing environments that can be defined as time series, and
considering the function f as being of additive nature, Equation (5) can be written as:

s′
t+1 = f (at, x̄t+1) + εt+1 (6)

If |εt+1| � |x̄t+1| (i.e., the estimation error of the time-series behaviour is very small),
the Q-values obtained by employing x̄t+1 should not affect the choice of actions as the
state reached s′

t+1 = st+1, but this assumption does not usually hold for non-stationary
environments, where εt+1 can be large. This fact is key to our approach. We want to
provide an estimate x̂t+1 to closely match xt+1, the future environment behaviour. This
can be used to train an RL agent offline, within a simulation of the environment based
on the estimate. Note that there is an important difference between our simulation
of the environment and the model of the environment in model-based approaches, for
example in Dyna-Q [Sutton 1990]. Dyna-Q builds a model of the environment from
experience and it is able to predict the next state and reward based on current state
and action. Our approach is model-free, and does not build a model or explicitly predict
the next state or reward; we instead simulate the environment outside of the agent
framework, and let the RL agent implicitly learn suitable actions for this simulation.

P-MARL employs advanced forecasting techniques for non-stationary environments,
where a close estimate x̂t+1 can be predicted, so that x̂t+1 ≈ xt+1.

Our chosen application environment is inherently non-stationary. In mathematical
terms, this means that the underlying generating function of the environment changes
over time. The problem is simplified by modelling the outcome of the generating func-
tion of the environment based on recently observed behaviour. At every timestep t,

1POMDPs are outside the scope of this article, and the application of P-MARL to POMDPs needs to be
evaluated separately.
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Fig. 3. P-MARL algorithm structure.

there is historic data available:

xH = (x1, x2, . . . , xt),

where xi is the state of the environment x at time i. We predict xt+1 considering past ob-
servations. This is a difficult task, since a non-stationary environment does not present
fully repeatable patterns. Moreover, the uncertainty present in the environment needs
to be accounted for separately, as anomalous events in the environment can lead to
unexpected changes. The accuracy of predictions is critical in the training process of
agents, as inaccurate predictions can make the agents take sub-optimal actions.

Depending on the speed of changes occurring in the environment, prediction systems
need to:

(1) Periodically update the model of the future states of the time series based on the
most recently observed samples (we have selected this approach as inspired by
work in Widmer and Kubat [1996]);

(2) Trigger the generation of a new model of future time-series states once a pattern
change detection mechanism notices an unexpected shift from the model’s expected
behaviour (as suggested in Alippi and Roveri [2008]).

The second part is more challenging. The new model is proposed based on a pattern-
matching mechanism that should provide a close match, based on similar previously
encountered behaviour. This, in turn, provides additional information in generating a
better model.

Figure 3 illustrates the P-MARL architecture, which integrates environment pre-
diction (via Primary Prediction and Pattern Change Detection/Matching components)
with off-line simulation, to provide additional knowledge to the MAS component, as
follows.

3.2. Prediction

P-MARL’s time-series prediction system has two main components. The primary predic-
tion component provides environment estimates periodically, forwarded to the MARL
component as a training base. In parallel, once an estimate has been provided by the
primary prediction component, its accuracy is continuously evaluated against the real-
time behaviour of the environment by the Pattern Change Detection and Matching
Component.
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3.2.1. Primary Prediction Component. The primary prediction component uses both re-
cent historic values of previous environment behaviour and key environment variables
that influenced the environment’s historic behaviour in order to provide an estimate of
future behaviour. The model is a hybrid solution mainly comprising ANNs and ARIMA,
taking advantage of these techniques’ strengths for time-series prediction. A specific
implementation of the hybrid solution for the smart grid domain is presented in Sec-
tion 4, where further details are given on each of these techniques. As determined in
our previous study [Marinescu et al. 2014b], some methods are more effective at specific
sub-components of time series than others, and a combined solution is more accurate
overall at predicting the complete time series. For example, given an estimate with a
horizon of five time-points (x̂t+1, . . . , x̂t+5), sub-technique A could be suited for elements
x̂t+1 and x̂t+3, while sub-technique B could be suited for elements x̂t+2, x̂t+4, and x̂t+5. The
best performance of sub-techniques needs to be investigated on the specific training
dataset to achieve maximum possible accuracy [Marinescu et al. 2014b]. In general, a
method consistently achieving higher accuracy than others over a time-series segment
would be selected to forecast it. Considering a forecast of a set length, its comprising
segments can be forecasted individually by the most suitable methods and then com-
bined to provide an ensemble forecast. For example, in our initial experiments on the
energy demand-side management prediction data, ANN performed well on non-linear
data, such as morning/evening energy demand peaks, while ARIMA performed well on
linear data, such as mid-day/late night energy demand. The prediction algorithm con-
tinues to monitor the suitability of the methods used for different segments of data, and
evaluates their accuracy and switches methods as appropriate at fixed time intervals.

3.2.2. Pattern Change Detection and Matching Component. This component detects when
the prediction model fails to provide accurate estimates of the future state of the envi-
ronment. The current behaviour of the environment is evaluated by a SOM [Kohonen
1990]. SOMs are a form of ANN trained through unsupervised learning. Data is clus-
tered into separate classes based on similarity. An initial set of previously encountered
environment values are used for the training of the map.

A SOM has a number of classes available for classification, which are decided at the
implementation stage. These depend on the approximate number of different types of
samples. Once the training process is finished, each new sample fed into the SOM is
assigned into one of the classes. Since there can be many different classes within a
SOM, a design choice was to group these into two main categories: normal classes,
encompassing most of the samples, and anomalous classes, comprising samples that
are outside of the ordinary [Marinescu et al. 2014a]. The SOM is initially trained with
historical data; new samples are classified by the SOM based on similarity with existing
clusters. If the new sample is classified into an anomalous category, further measures
need to be taken.

A predicted horizon (x̂t, x̂t+1, . . . , x̂t+h), provided by the primary prediction compo-
nent, is used to detect anomalies. The initial assumption is that for this horizon, the
environment behaviour will not be different to the predicted behaviour, i.e., anomalous.
As the environment evolves from time t to time t + i between (t, . . . , t + h), we overlap
the recently acquired information about the environment over the predicted horizon.
Therefore, the sequence becomes (xt, xt+1, . . . , xt+i, x̂t+i+1, . . . , x̂t+h). At each time t + i,
the newly obtained sequence is inserted into the SOM. If the sequence is deemed to
be anomalous, further adjustments need to be made since the previous historic data
can result in inaccurate predictions. The sequence obtained so far is then compared
with similar sequences from the corresponding anomalous class, and a closest match is
found based on the k-nearest algorithm; this match is used to fill in the remaining time
points in the sequence from the current time t + i. Fill-in points are adjusted according
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to the correlated current environment variables. If the behaviour is not deemed anoma-
lous, no re-prediction will be executed. If the environment behaviour identified as
anomalous does not lead to an actual anomaly (i.e., it was a false-positive detection),
the re-prediction and matching processes will still be executed, but the resulting predic-
tion will not be significantly different from the one provided before anomaly detection.
Therefore, the performance of the agents will not be negatively affected.

In short, the hypothesis is that the closest previously encountered sample from
the matched class of anomalies will increase prediction accuracy by triggering a new
estimate, which is particular to anomalous cases.

3.3. The Multi-Agent System

As illustrated in Figure 3, and detailed in Algorithm 1, a final estimate of the envi-
ronment’s future expected behaviour is provided by the prediction module to the MAS
agents. The MAS agents evaluate their performance based on this expected future be-
haviour and recalibrate their state-action values. This is a simulated, off-line process
of exploration-exploitation, repeated by the agents until solutions converge, and they
are ready to operate in online mode. The simulation process means they are better
prepared to achieve a best-response function to the expected future behaviour of the
environment. Even though the actual environment they face may be somewhat differ-
ent from the estimate, the hypothesis is that the previously obtained knowledge will
help them perform well in conditions similar to the ones provided by the estimate.
In the case of Q-Learning, this translates to obtaining Q-values that allow agents to
maintain the same policy both for the estimate and for the actual environment, since
the environment states are expected to be approximated in a similar way.

ALGORITHM 1: P-MARL Algorithm
foreach new prediction do

envVars ← updateEnvData();
histData ← updateHistoricBehaviour();
prediction ← makeInitialPrediction(envVars,histData);
evaluatePrediction(prediction,currentEnvBehaviour);
if no significant change detected then

finalPrediction ← prediction
else

anomalyType ← matchChangeType();
finalPrediction ← repredict(anomalyType,envVars,histData);

end
for each agent do in parallel

reward agent based on decision and influence on env status;
update Q-Values;

end
exploit learned info on actual env;

end

Once each agent receives a prediction of the environment behaviour, several types of
learning can occur during the exploration stage of agents, depending on the communi-
cation restrictions imposed on the system:

1. Single agents acting separately on the environment: during exploration, each agent
reaches a policy solely based on the effects occurring on the environment due to
its own actions. An agent cannot see any of the effects of other agents on the en-
vironment. While the environment is updated only locally, the final state of the
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environment will aggregate all actions taken, but this aggregated state is not ac-
cessible to agents (e.g., several slot-machine players attempting to win money from
a casino). This is the case with most severe communication restrictions.

2. Multiple agents acting simultaneously on the environment: during exploration, an
agent’s action on the environment is taken into account together with the cumu-
lative effect of all agents’ actions. The agent can see this cumulative effect of all
agents’ actions only after it has chosen an action; therefore, agents choose actions
simultaneously. This case assumes that there is only post-communication towards
the agents, coming from an environment update once all agents have taken action
(e.g., the stock market, where brokers take actions simultaneously).

3. Multiple agents acting sequentially on the environment: during exploration, agents
take decisions at each time step in a sequential manner (e.g., an auction, where
only the current bid matters and not previous ones). An agent will see the cumu-
lative result of the previous agents’ actions on the environment, and then decide
which action to take. Once it has taken a decision, the updated cumulative effect
on the environment is passed on to the following agent. The order of this sequence
is random at each timestep; therefore, no agent is favoured during the length of a
learning episode. This form of interaction requires an underlying protocol to main-
tain ordering between the agents and to avoid overlapping decisions.

3.4. P-MARL and the Requirements for Optimisation in Non-Stationary Environments

Section 2.4 listed a set of requirements for optimisation in non-stationary requirements,
based on the existing approaches and the gaps in their applicability. P-MARL, as
presented in this section, meets those requirements as follows:

—Req. 1 Taking optimal actions in the environment is enabled by the Multi-Agent
System component (Section 3.3). Agents use Q-learning to learn suitable actions for
each of their states. Actions are pre-learned offline in a simulation facilitated by the
prediction and simulation components, and further adjusted to new environment
conditions online.

—Req. 2 Detecting changes in the environment is done by the Pattern Change De-
tection and Matching Component (Section 3.2.2). This enables P-MARL to detect
when environment prediction (as provided by the Primary Prediction Component,
Section 3.2.1) differs from the actual environment behaviour.

—Req. 3 Future environment behaviour is estimated by the Primary Prediction Com-
ponent (Section 3.2.1). When changes from expected environment behaviour occur,
the Pattern Change Detection and Matching Component is able to detect and classify
the type of change in the environment and trigger reprediction, which is executed by
the Primary Prediction Component. This is done to enable prediction of environment
dynamics even when changes from expectations occur.

—Req. 4 Pre-training for new dynamics (i.e., previously unencountered) is enabled
by the Environment Simulation component (Figure 3). Re-predicted behaviour is
simulated within this component and enables agents to adjust their preferred actions
before acting online.

P-MARL detects changes in the environment (Behaviour Change Detection) and
predicts environment behaviour (Behaviour Prediction) for both previously encoun-
tered dynamics and new dynamics without losing any of the features of the existing
approaches to optimisation in non-stationary environments. Behaviour prediction in
the new environment dynamics is enabled, which was not possible with other exist-
ing MARL approaches to non-stationary environments (see Table I). Optimisation in
newly-encountered dynamics is further improved by enabling off-line instead of online
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learning implemented by the existing approaches, which reduces the negative impact
on the environment during the training phase.

4. SMART GRID CASE STUDY

Smart energy grids are a good example of systems operating in non-stationary envi-
ronments, which can be modelled as a time series. Environment non-stationarity in
energy grids is caused both by non-stationary energy usage (e.g., energy use depends
on the time of day, day of the week, weather) and non-stationary renewable energy gen-
eration, which depends on weather. In this case study, we apply P-MARL specifically
to Demand Side Management (DSM). DSM techniques attempt to reduce peak-time
energy usage by re-scheduling deferrable loads to times when the baseload (i.e., non-
deferrable energy load) is lowest. These deferrable loads can be controlled by intelligent
agents organised in an MAS and learn how to schedule energy usage to achieve their
objectives, while avoiding peak-time energy usage.

4.1. Multi-Agent Systems and the Smart Grid

Several DSM solutions using MAS have been proposed, with particular focus on electric
vehicle (EV) charging, which have high power consumption but charging time flexibility.
Examples include: agent-based control algorithms based on grid prices and emergent
coordination of agents [Ramchurn et al. 2011]; imbalance cost reductions through a
multi-agent solution for coordinated plug-in hybrid EVs [Vandael et al. 2011]; EV
fleets as virtual power plants for energy trading in wholesale markets [Kahlen et al.
2014]; and research into individual EVs, which benefit from smart charging strategies
based on learning agents [Valogianni et al. 2014]. However, the proposed approaches
do not account for potential changes in the baseload (e.g., unexpectedly cold weather
leading to additional electric heating in the home), and so do not adapt, leading to
sub-optimal performance if the baseload does change.

We evaluate P-MARL in a standard DSM scenario, where EVs in a community of
households try to optimise their battery charging. The EVs coordinate their usage
with other EVs to decrease peak-energy usage and best utilise nighttime energy usage
troughs. We monitor and predict energy baseload and aim to improve agent charging
performance by providing accurate baseload predictions.

4.2. Primary Prediction Component Configuration

In the smart grid scenario, EVs arrive home in the evening and depart in the morning.
EV agents need to be aware of periods of low demand while they are home in order
to be as cost effective as possible. In a non-stationary environment, though, such a
priori knowledge is not available, as environment conditions may directly influence
demand. An initial analysis of how the environment evolves needs to be performed
to provide the input required to configure the primary prediction component, and
thereby provide the environment predictions that the EV agents need. In general,
the defining characteristic of a relevant environment is examined in relation to other
environment variables, and any dependent variables found should also be employed in
the prediction component. Furthermore, seasonal patterns and trend lines in the time-
series representation need to be addressed when customising the prediction model.

Short-term load forecasting (STLF) focuses on day-ahead demand forecasting, pro-
viding an estimate every 24 hours. This is appropriate for power demand estimates, as
energy demand is seasonal at day level. Such forecasts rely on historic values of pre-
vious power demands, and also on other data such as weather variables (temperature,
humidity), day of the week, and public holidays [Gross and Galiana 1987]. While week-
days and weekends differ significantly in terms of demand patterns, each weekday
also poses somewhat different characteristics. Anomalous days (from a demand

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 9, Publication date: May 2017.



Prediction-Based MARL in Inherently Non-Stationary Environments 9:13

perspective) also occur, mostly because of public holidays but also because of other
unexpected reasons, such as snap cold periods. These anomalous days need to be ac-
counted for separately.

P-MARL’s forecasting method is a hybrid solution exploiting the best features of sev-
eral forecasting techniques: ANN, Neuro-Fuzzy Networks, and auto-regression. The
hybrid solution uses as input previously recorded power demands, past day’s tempera-
ture and humidity information, temperature and humidity forecasts for the day to be
predicted, and day of the week information. The output is the next day’s power demand
estimate, provided as a sequence of 24 data points, one for each hour of the day.

In the neural network, the input neurons are divided as follows:

—24 neurons used for previous load input, one for each hour of the day
—5 neurons are used for the day code input, for each day of the week (weekends are

excluded)
—14 neurons are used for weather forecast input along the day, 8 for temperature

and 6 for humidity; more inputs were chosen for temperature because of its higher
correlation with energy consumption

The output layer comprises 24 neurons, which represent the short term load forecast.
Each of the output neurons provides a demand estimate belonging to an hour of the
day, in consecutive order.

Baseload demand prediction is based on the weather forecast for the day to be
predicted, together with the historical recorded demand occurring over the same day
of the previous week. The reason for choosing the load belonging to the same day of the
week for prediction (e.g., previous Tuesday is used for predicting the following Tuesday)
is that each day of the week tends to have a particular demand shape.

The ARIMA model, another key component of the prediction system, is based on a
whole week’s recorded demand, occurring before the day to be forecasted. Thus, a total
of 120 (5×24) coefficients are taken into account in the model, one for each hour of the
week [Marinescu et al. 2014b].

This technique relies only on the analysis of the time-series representation of the
environment’s behaviour. In this particular case study, the forecasted energy load is
provided as input. However, the technique can be similarly used for other domains, for
example: in vehicular traffic control, by providing traffic flow forecasts to traffic light
agents; in cloud computing, by employing a daily forecast of expected computational
load to resource allocation agents; or data traffic information forecasts provided to
telecommunications node agents for these to decide routing tables. Prediction of future
behaviour from any given dataset can be provided by a hybrid combining several
best-performing techniques specific to a domain, as described here for the smart grid
scenario. Alternatively, it can be provided using only a single technique, if, based on
the data sample available, it provides a suitable level of accuracy. Any of the state-of-
the-art time-series analysis techniques, as discussed in Section 2.3, can be integrated
into P-MARL, as only the behaviour prediction is needed, regardless of the techniques
and algorithms used to obtain it.

4.3. Pattern Change Detection and Matching Component Configuration

In situations involving uncertainty, quality of service guarantees cannot be provided.
Even if previous models generate accurate predictions, there are particular times when
forecasts fail to closely match actual behaviour. In smart grids, anomalous situations
are caused by anomalous events such as unexpected climate phenomena or particular
socio-economic events. The pattern change detection component makes the system
more robust in the face of such events.
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Once the prediction model provides a forecasting estimate for the next day, the actual
demand is compared with the estimate along the first few hours of the morning (the
evening part is the period of highest demand and needs to be accommodated for). The
custom SOM used for classification in this case comprises four classes: two classes
for normal days (one for cold/winter days and one for warm/summer days), and two
anomalous classes (one for public holidays and one for other particular days).

If significant deflections from the actual demand occur, the day will be classified in one
of the anomalous classes. In this case, the pattern change detection mechanism triggers
reprediction, since the demand estimate is regarded as flawed. A match is chosen based
on similar patterns encountered previously, which are found in a database of historic
recordings. After the self-organising map classifies the type of uncertainty detected, it
provides the closest previously encountered match from the fitting class.

The reprediction component is based on an ANN which adjusts its historic load
input part (24 neurons, one for each hour of the day) to a combination between the
actual demand observed so far of the anomalous day (7:00-14:30 interval) and the
remaining demand from the closest match provided by the SOM component (14:30-
23:30 interval). This constructed sequence is input to the ANN, which also takes into
account current weather and day of the week conditions to provide another forecast of
the day. It is expected that the results will be more accurate for the evening demand
interval.

This technique can be used to detect changes and adjust independently of the appli-
cation domain. For example, when new vehicle traffic patterns are detected, these can
be matched with some known situations (e.g., traffic in rainy conditions) and this in-
formation can be further used by agents for calibration; when high traffic is generated
by a particular webpage, this can be matched with patterns occurring after exposure to
social media, for agents to allocate additional server resources; or when there is high
traffic in a particular telecommunication network area due to a social event, additional
telecom stations can be temporarily dispatched. Selection of normal and anomalous
classes for the SOM is straightforward, with a little knowledge of the domain.

4.4. P-MARL System Implementation

P-MARL integrates the prediction and pattern change components with a MARL sys-
tem. The RL process is implemented using W-Learning [Humphrys 1995], which com-
bines two Q-Learning objectives: (1) sufficiently charge an EV for the next day’s trip
considering the time available for charging, and (2) avoid generating peaks in demand.
W-learning is a technique for multi-policy action selection, where each policy is imple-
mented as a Q-learning process, and which works by minimising the loss that any of
its comprising Q-learning process can incur when their nominated action is not being
executed.

In our case, the agent is rewarded more for the first objective than for the second
one, as otherwise, the agent would avoid charging at all. By combining both objectives,
the agent should only generate demand during times of low energy usage. Once the
agent achieves the minimum charge required for the daily trip, the reward for charging
decreases, so that peak-avoidance can be prioritised.

The environment forecast provided by the prediction components is used to find the
times of lowest energy usage. Since we employ tabular Q-learning, for the agent’s state
aggregation, the forecasted load is analysed, and afterwards, discretised into 10 differ-
ent levels (or RL states) depending on the amount of power used. State aggregation is
necessary because otherwise there are an infinite number of possible states between
minimum load and maximum load (e.g., the [0-300]kW interval). The lowest discretised
states will present the highest reward to the agent, therefore encouraging it to charge
during intervals of low demand. However, the load levels are expected to change also
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due to the action of other agents in the environment; therefore, the reward will also
depend on their actions.

In general, when employing an environment described through time series, rewards
for actions should be given depending on the state of the environment (i.e., depending
on whether an action was taken during low/high load).

4.5. Benchmark: Optimal Centralised Solution

We have defined the Pareto optimal performance of this problem to evaluate against
P-MARL. Our optimal centralised solution aims to optimise the following cost
function:

min F(x) = min
m∑

j=1

[
n∑

i=1

(
xij + C j

)]
xij, (7)

where F(x) is the cost function, n the total number of EVs, mthe total hours available for
charging (assuming the same availability schedules for EVs), xij the charging decision
of vehicle i at time j (0 for not charging and 1 for charging), and Cj the initial cost of
energy at time j (based on baseload). This is a binary integer programming problem,
therefore NP-complete [Karp 1972]. While a centralised solution is not feasible in most
situations when a problem is NP-complete, it is guaranteed to be optimal with respect
to a defined set of constraints, and so is an interesting benchmark for comparison
purposes. We solve this as a valley-filling problem, using the approach presented in
Gan et al. [2011]. The problem is solved centrally, by pre-calculating the static solution
for the day ahead. Each EV is taken in turn, the minimum amount of charging slots
required is computed, and then charging slots are allocated in the periods of low
demand. Each EV incrementally updates the overall demand until all EV charging
slots are allocated.

The best performance that can be achieved by the MARL technique should have
the same aggregated effect as the valley-filling algorithm. In order to evaluate the
optimality of the MAS solution we used a formula derived from the mean absolute
percentile error (MAPE). This is shown in Equation (8).

M = 1
m

m∑
j=1

(
1 − |Xj − X̂j |

TotalNoOfEVs

)
, (8)

where Xj is the total number of EVs charging at time-slot j, and X̂j is the optimal
amount of EVs that should be charging at time-slot j. Note that this formula actually
represents the complement of error, as opposed to MAPE.

5. EXPERIMENTAL RESULTS

Power demands from a community of 230 households are employed, as recorded by
an Irish smart meter trial [Comission for Energy Regulation, Ireland 2011]. This is
roughly the number of houses provided for by a typical 630kVA residential transformer
[Marinescu et al. 2013]. We have also assumed an EV penetration rate of 40% [Nemry
and Brons 2010], resulting in a total of 90 EVs. A daily trip is considered to be 50km
[EPA 2008], while the EV specifications are based on the Nissan Leaf characteristics
[U.S. EPA Fuel Economy Information 2014]. The vehicles can choose 15 minutes charg-
ing slots anytime between 18:00 and 09:00. This smart grid scenario was implemented
in GridLAB-D, a power distribution system simulator [U.S. Department of Energy at
Pacific Northwest National Laboratory 2014], where a standard charging rate of 1.4kW
was used.
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Fig. 4. Predictions of an anomalous day.

Three sets of experiments are presented here, with different levels of interaction
between agents and environment. These reflect the cases presented in Section 3.3.
For these experiments, we chose an anomalous day from the dataset in order to iden-
tify P-MARL performance differences between employing only the primary prediction
component and a combined system that also involves pattern-change detection and
matching abilities.

All 90 EV agents begin the training sessions with a state of charge (SOC) of 0% (i.e.,
empty battery). Their purpose is to sufficiently charge for the next day’s trip. Agents
are trained offline over a period of 100 days, in a simulation of the environment. The
simulation is based on a prediction of the environment’s future behaviour. After the
training session, agents are tested on the actual environment. Each set of experiments
is performed 10 times and averaged.

The load from the same day of the previous week and three different load predictions
are provided in each set of experiments as input to P-MARL: simple prediction (no
pattern matching), anomaly-matching prediction (SOM Prediction), and perfect pre-
diction (i.e., the estimate is the same as the actual environment behaviour). The load
of the previous week is used in a traditional MARL implementation, which is based
only on previously encountered situations. Perfect prediction represents an idealised
situation, where the environment induced non-stationarity is removed from the MARL
problem. This latter case is used only for comparison purposes, to differentiate between
the levels of performance achievable by the first two prediction types.

The evening and early morning periods of an anomalous day used, together with its
predictions and the same day of the previous week, are illustrated in Figure 4. The
anomalous day occurs in December 2010; a comparison with other winter days reveals a
higher amount of energy usage in the anomalous day. This anomaly occurs because of an
unexpected cold front advancing from the North Atlantic, which caused increased power
usage. The previous day and simple prediction underestimate the actual demand, while
the SOM reprediction overestimates the demand. In this case, SOM reprediction takes
a more conservative measure. The previous day has a forecasting error of 14.87%
MAPE, simple prediction achieves a forecasting error of 7.65% MAPE, while SOM
reprediction achieves 4.66% MAPE. These results show that significant increase in
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Fig. 5. Single EV charging. Fig. 6. EVs charging separately.

Table II. Algorithms Efficiency in Different Prediction Conditions

Pareto Performance

MARL Agent Interaction
MARL P-MARL

Prev. Day Simple Pred. SOM Repred. Perfect Pred.
1. Separate Actions 83.22% 83.22% 75.78% 83.22%
2. Simultaneous Actions 78.94% 86.95% 85.88% 86.71%
3. Sequential Actions 97.76% 94.24% 93.68% 95.20%

forecasting accuracy can be obtained using P-MARL’s primary prediction component,
and even further improvements by using pattern change detection, matching, and
re-prediction.

Before considering the multi-agent scenario, as a preliminary study, we have first
validated our algorithm’s ability to address a non-stationary environment when applied
at single-agent level (i.e., focusing only on environment-induced non-stationarity with-
out the impact of agent-contributed non-stationarity). We investigated the impact of
different levels of accuracy of non-stationary environment prediction, considering only
one EV agent within a single household. For this, we have scaled down the commu-
nity’s demand to approximate the demand of one house. Figure 5 presents the results
obtained by the EV agent while training on the four different types of estimation for
the day’s demand. Note that the curves when employing the three predictions (i.e.,
simple prediction, SOM reprediction, and perfect prediction) fully overlap.

When training on the previous day, which has lower demand, the EV agent fails
to charge sufficiently 60% of the time given 10 trials. This can be noticed also in
Figure 5, as the EV trained on the previous day starts charging too late and stops
charging too early, since it incorrectly assumes that the demand is too high at those
times. On the other hand, accuracy differences between the three predictions in this
particular scenario do not impact the performance of a single agent. When using any
of the predictions for training, the EV agent will charge sufficiently 100% of the time.

In the following sections, we investigate the impact of prediction accuracy on overall
P-MARL performance. The summary of the results are presented in two tables. Table II
shows the Pareto efficiency of the MARL solutions with regard to an optimal cumulated
demand pattern; the optimal performance is defined by an aggregate behaviour where
agents charge precisely the amount necessary for their daily trip while generating
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Table III. Percentage of EVs Charged Before Departure

Percentage of Charged EVs

MARL Agent Interaction
MARL P-MARL

Prev. Day Simple Pred. SOM Repred. Perfect Pred.
1. Separate Actions 100% 100% 100% 100%
2. Simultaneous Actions 16.4% 95.7% 100% 100%
3. Sequential Actions 82.3% 83.9% 100% 100%

perfectly smoothed demand on aggregate. Table III presents the percentage of EVs
achieving their target charge during the allocated charging interval.

Case 1: EVs Charging Separately (Figure 6). Each agent has a view only of its local
environment, and is only aware of its own impact on the overall system performance.
As each EV adds a relatively small load to the overall energy load, regardless of the load
and load prediction, each EV perceives that there is enough capacity for it to charge.
Therefore, in all prediction method cases, all EVs end up fully charged 100% of the
time (Table III). As a consequence, multiple vehicles end up charging simultaneously,
increasing the overall load, which achieves only up to 83% Pareto optimality regardless
of the prediction method used (Table II). The SOM method generates a peak earlier,
which affects its Pareto efficiency even more, since it tends to overestimate the demand
(see Figure 4). EVs therefore start charging once the load goes under their initial
expectations. We have performed additional tests on statistical signficance through
two-tailed t-tests (where results were considered to be statistically significant if their p-
value is lower than 0.05). The performance differences in terms of Pareto performance
between simple prediction/perfect prediction and SOM reprediction are statistically
significant, with a p-value of 1.21e − 11 over the 10 different runs. Since all vehicles
end up charged all the time, there is no statistical difference between numbers of
charged vehicles.

Case 2: EVs Charging Simultaneously (Figure 7). In this case, all agents are aware
of their aggregated impact on the environment, and all agents take actions simul-
taneously, taking the overall impact in to account. The results show the impact and
importance of accuracy of prediction on the end performance in such a scenario. In
terms of Pareto optimality, both simple and SOM reprediction result in 7% improve-
ment over using the previous day’s load as prediction (Table II). In terms of battery
charge, when using previous day’s load, only 16.4% of EVs achieve the required charge.
Using simple prediction significantly improves that to 95.7%, while SOM reprediction
achieves the required charge on 100% of EVs, same as the perfect prediction (Table III).
The difference in Pareto performance between perfect prediction and SOM repredic-
tion runs is statistically significant, with a p-value of 0.0058, while simple prediction
and SOM reprediction runs failed to show any significant differences, with a p-value
of 0.10. In terms of percentage of vehicles charged, the difference was noticed to be
statistically significant between simple prediction and the SOM reprediction/perfect
prediction cases, with a p-value of 0.0002.

Case 3: EVs Charging Sequentially (Figure 8). In this case, agents take actions one
after another, so each EV is aware of the aggregated impact of all of the previous
agents on the power demand, before deciding whether to charge or not. Accuracy of
prediction does not have a substantial impact on Pareto optimality of the solution,
and less accurate prediction sometimes even results in better performance (Table II).
Since simple prediction underestimates demand, and some agents charge more than
required, the aggregate demand will get closer to the optimal line. However, in terms of
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Fig. 7. EVs charging simultaneously. Fig. 8. EVs charging sequentially.

meeting agents’ objectives, again, only SOM reprediction achieves the required charge
on 100% of EVs, while using previous day load and simple reprediction do so only for
82.3% and 83.9% of EVs, respectively (Table III). The difference between SOM results
and the ones obtained by using simple prediction are statistically significant, with
a p-value of 1.25e − 7. The Pareto optimality differences between the two situations
are very small, however, still statistically significant with a p-value of 0.0005. Also,
there is a statistically significant difference between perfect prediction runs and SOM
reprediction runs, with a p-value of 2e-9 with regard to Pareto optimality.

We observe the difference between the single-agent and multi-agent cases; in the
single-agent case, different predictions used did not have any impact on the charging
outcomes, as the EV ended up fully charged during all the trials for all prediction
types. However, when multiple agents are involved, the accuracy of prediction can
make the difference between agents reaching their charging objective or not, as can be
seen in Table III. This confirms the requirement for very accurate predictions of the
environment’s behaviour, as achieved by complex time-series prediction methods used
by P-MARL.

5.1. Results Analysis

The quality of prediction and an agent’s level of interaction with the environment and
other agents has a high impact on the aggregate P-MARL performance. When agents
are not informed of the effect of other agents’ decisions (case 1), the aggregate demand
has negative consequences on the environment. The peak demand that results in this
case (as can be seen in Figure 6 around midnight) forces the scheduling of additional
power generation units, or even a blackout at neighbourhood level. This peak effect is
noticeable regardless of the level of prediction accuracy.

Once agents have access to aggregate charging decisions (case 2), they notice their
cumulative effect. When their aggregated behaviour leads to peaks, agents will back-off
at the next timestep. The problem is that they can all resume charging two timesteps
later as they register a low demand once all have backed off. This alternating behaviour
is illustrated in Figure 7 and is noticeable, in particular, when using the previous day’s
load as prediction and in the simple prediction situation. Here, since the nighttime pre-
diction is underestimated, agents believe that their aggregate behaviour is generating
new peaks. This is not the case in reality, and as a result, some agents do not achieve
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their target charge because they expect time slots of lower demand to follow (as seen
in Table III).

Informing agents of the cumulative effect of other agents before making their own
decision leads to a considerable performance improvement (case 3). Peak demand is
avoided, and agents’ aggregate performance closely matches the optimal line, as il-
lustrated in smooth lines in Figure 8. In this case, prediction quality also affects the
number of EVs achieving their target SOC. Some EVs trained on the previous day
and simple prediction cases do not charge enough before their departure, despite the
high Pareto efficiency achieved on aggregate. This is because some of the first agents
to make a decision still decide to charge even though their SOC is sufficient for their
trip, as they are rewarded when the load is low enough to allow that. Therefore, some
of the following agents that are not sufficiently charged, and that are about to make
a decision, will encounter a load state where they believe that charging negatively
impacts the grid, resulting in them avoiding charging.

An investigation of the 10 different runs reveals consistent results in case 1 and 3. In
case 2, there is a larger amount of variability involved, in particular, during midnight
and morning hours. Some time slots with higher variability occur because of the effect
agents have when acting in bulk. If all agents charge in these particular time slots,
their aggregate demand can result in peak demand, a situation in which all agents are
penalised. They will immediately back off in this situation for the next time slot, but
will start again for the one after.

In summary, P-MARL provides improved performance over the traditional MARL
approach with regard to the most important criteria: agents achieving their charging
objectives. When SOM reprediction is provided and agents interaction exists (case 2
and 3), all P-MARL agents achieve their objectives, as opposed to only 16.4% of agents
in simultaneous MARL and 82.3% in sequential MARL. In terms of Pareto efficiency, P-
MARL performance is similar to MARL, except for the simultaneous actions case: here
MARL performs considerably worse. This is because MARL agents consistently back
off as they erroneously assume that their bulk charging is generating peaks in demand.

6. CONCLUSIONS AND FUTURE WORK

This article presented P-MARL, a novel approach that extends MARL by integrating
advanced time-series analysis techniques to address inherently non-stationary envi-
ronments. The effect of environment-induced non-stationarity is reduced through pre-
diction and pattern-change detection and matching techniques, which provide agents
with additional information about the upcoming behaviour of the environment. In ef-
fect, these extensions enable MARL to reduce the time needed for online learning, and
minimise the negative impact agents have on the environment while learning how to
optimise their behaviour in the new environment conditions.

P-MARL can be applied to non-stationary environments whose behaviour can be
characterised as time series, and whose future behaviour is not completely random. In
other words, where external influencing factors render the environment’s behaviour as
somewhat predictable through additional information sources. In this article, we used
a smart grid scenario as an example of such an environment and have shown that
P-MARL obtains significant improvements over MARL in a simulation of residential
energy demand response.

P-MARL has a number of limitations we plan to address in our future work. For
example, it includes an online environment simulation component, which assumes an
online connection between agents in the simulation environment. If agents cannot in-
teract within a simulation of the environment, their performance is reduced to the
first type of interaction presented, single-agents acting separately, reducing the bene-
fits that are achievable by the use of P-MARL. This could be addressed by providing
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alternative communication abilities, such as agents exchanging messages directly in
order to inform others of their decisions.

Another assumption in the evaluation of P-MARL was that all agents have the
same global objectives, in addition to an individual local objective. However, the MAS
agents could have conflicting objectives, or even involve malicious agents; therefore,
the convergence of P-MARL in such conditions should be investigated. We plan to base
a solution to this problem on multi-objective RL optimisation techniques such as DWL
(Distributed W-Learning) [Dusparic and Cahill 2010], rather than plain Q-learning.

The performance of P-MARL will also be evaluated in other non-stationary environ-
ments, for example, as discussed in Section 4.2, vehicular traffic, network traffic, and
load balancing. Previous experience with portability of RL-based algorithms across do-
mains with similar characteristics (such as, for example, DWL, which has been applied
in smart grids, urban traffic control [Dusparic and Cahill 2010], and smart camera
networks [Rudolph et al. 2014]) leads us to expect a relatively similar process.

Finally, as discussed in Section 2.2, non-stationarity in MARL can be environment-
induced or contributed by the interacting agents; P-MARL addresses only environment-
induced non-stationarity. Integration of P-MARL with the presented state-of-the-art
techniques for addressing agent-contributed non-stationarity should be investigated to
provide a complete solution to optimisation in non-stationary environments.
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