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Abstract—Small scale electrical demand forecasting is an
emerging field motivated by the penetration of renewable en-
ergy sources and the growth of microgrids and virtual power
plants. These advances pose more complex forecasting challenges
compared to the already established large scale forecasting
approaches.

Current short term load forecasting methods deal with two
types of day, normal and anomalous, which are predicted
separately. Anomalous days are classified as such ahead of time,
based on key calendar events such as public holidays. However,
there are some anomalous days which are not always predictable
on a day ahead basis. Due to unforeseen events, a seemingly
normal day can progress towards an anomalous case causing
high errors in prediction. We propose a new dynamic forecasting
mechanism that actively monitors residential electrical demand
along a forecasted day, and detects anomalous pattern changes
from a previously predicted demand of the day. A self-organising
map is employed to detect anomalous days as they progress. Once
an anomaly is detected, a neural network based prediction system
changes its input neurons according to a previously detected and
recorded match found in a database of anomalous days, in order
to accommodate the anomalous day prediction.

Results are based on measured power demands recorded in
Ireland from domestic smart-meters between 2009-2011, and
focus on small scale residential electrical demands of up to 350
kWh. During anomalous days our dynamic prediction approach
achieves forecasting results within 3.63% of the real load, down
from the 7.37% obtained by the initial prediction algorithm and
the 5.41% achieved by standalone re-prediction, without pattern
matching.

I. INTRODUCTION

Neural networks have been traditionally used in time-series
forecasting, and are in particular some of the most commonly
found techniques in short term electrical demand estimation
[1], [2]. Utilities rely on it for applications such as generator
scheduling and electricity market operations. While large scale
forecasting is an established field, changes in the structure of
the electrical grid pose new challenges for prediction methods.
In the attempt to move towards a smarter grid, architectural
modifications advance the concept of a distributed electrical
network. The system should integrate renewable sources of
energy while at the same time supply an increasing demand
for electrified appliances such as electric vehicles. As a result,
small scale units such as microgrids or virtual power plants
(VPPs) come into play as quasi-autonomous entities intercon-
nected in the smart grid. These units have their own sources
of energy and can participate in electricity market operations,
as well as operate by themselves autonomously, if required by

the main grid. For each case, they have to be able to estimate
in advance their own demand. Both microgrids and VPPs
are aggregates of various sources of electricity generation,
storage and consumption. Due to having unsteady supply from
renewable sources, these units depend on the electrical demand
of their own users for efficient operations.
In recent years, small scale short term load forecasting (STLF)
has become of significant interest to microgrids thanks to the
previously mentioned penetration of renewable sources of en-
ergy. In general, the owners of microgrids try to maximize the
use of renewable energy and minimize the overall electricity
costs, while maintaining user comfort. We believe that these
constraints can be better matched by the use of accurate small
scale load forecasting techniques.
One fact worth noting is that small scale demand raises more
obstacles in the way of forecasting, mainly through frequent
power demand changes and therefore less smooth demand,
with more variability in user behaviour when compared to
large scale. This is due to the considerable impact of individual
users and their irregular behaviour pattern upon the overall
power consumption, as observed in recent work investigating
the effect of scale on forecasting algorithms [3], [4].
The following parts of this paper are organised as follows:
Section II presents the current research focusing on short
term load forecasting, with particular interest in those dealing
with small scale power systems. Section III describes our own
approach to small scale load forecasting with regard to the
more general normal days and also with special focus on unan-
ticipated anomalous days, which is an issue that hasn’t been
addressed before. Section IV shows our results obtained when
testing the dynamic forecasting algorithm on both normal and
unanticipated anomalous days. Finally, Section V presents our
conclusion with regard to the obtained results, and future work
based on short term load forecasting on small scale.

II. BACKGROUND AND RELATED WORK

Small scale forecasting has gained more interest in the
last decade, through the emergence of microgrids. There are
a number of different techniques applied in electrical load
forecasting with focus on large scale [1], [5]–[8]. Most of
the methods consider weather information and current day of
the week as important inputs in the prediction mechanisms.
Several techniques of those applied on a large scale have also
proven themselves successful in small scale, with artificial
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neural networks (ANNs), auto-regressive integrated moving
average (ARIMA) methods and neuro-fuzzy networks achiev-
ing reasonable accuracy in tests. Results have shown prediction
accuracy that goes up to 5% mean absolute percentile error
(MAPE), according to the state of the art research [4], [9]–
[11].
Most successful techniques combine several methods to im-
prove overall results. Among them, one of the most noticeable
and effective additions is the classification of daily demands
into different sets, generally accomplished with the help of
self-organising maps (SOM) [3], [12]–[14]. These classifica-
tion methods split the forecasted days into separate classes,
such as weekdays, weekends, and holidays. Classification is
performed based on normal days and anomalous days. Public
holidays and sometimes days close to them tend to be seen
as anomalous days in most of the research, and are treated
separately as such [15]–[17].
Although classification techniques have brought significant
increases in forecasting accuracy when compared to more
general approaches, anomalous days are still considered based
on calendar events. Public holidays are seen as anomalous
days to start with, and the otherwise normal days around
them are considered anomalous as well in some of the cases
(for example when they are the bridge between a weekend
and a public holiday). We believe that a purely calendar
based approach doesn’t deal with real anomalies caused by
unforeseen events outside of the calendar and weather range.
Some of these events could be electrical grid malfunctions,
unexpected climate phenomena or natural disasters. A true
smart grid should be able to mitigate such issues, as well as
be able to dynamically adapt its previously forecasted demand
estimates. Of course, this has to be done with regard to short
term load forecasting, where generally a demand estimate is
made with a 24 hours ahead basis. The problem is that, most
probably, such anomalies will be detected as a forecasted day
progresses.

III. ALGORITHM DESIGN

Our previous work has dealt with short term load forecasting
on a small scale, through a hybrid approach that combines
neural networks, wavelet smoothing, neuro-fuzzy networks
and ARIMA techniques, with accuracy results that surpass
the ones of the individual methods involved. The tests were
performed over the aggregated measured power demand of
230 residential households from Ireland, recorded during a
smart-meter trial which took place between 2009 and 2011.
The hybrid method obtained forecasting results of 2.39%
normalised root mean square error (NRMSE) during a testing
period of 4 consecutive weeks involving only weekdays [18].
However, the forecasting algorithm was evaluated over a time-
frame that included only normal days, with anomalous days
being considered a separate case.

In this paper we present a new technique, motivated by
state of the art research involving load forecasting and SOMs.
The technique detects anomalous power usage behaviours on
the fly and triggers an appropriate re-prediction mechanism,

Fig. 1: Anomaly Detection and Re-prediction

as pictured in Fig. 1. Short term load forecasting generally
makes estimates ahead between 2 weeks and 24 hours. We
believe that some anomalies cannot be anticipated within a
day ahead. These can occur as the day progresses, and actions
taken at the point of anomaly detection can be critical for
the optimal operation of the microgrid. Unlike the calendar-
based approaches of the state-of-the-art forecasting methods,
we are dealing here with unanticipated anomalous days. Our
pattern change detection component continuously monitors
power demand during a day to detect if it becomes anomalous,
considering that it hasn’t been marked as anomalous previ-
ously. As a seemingly normal day progresses and anomalous
power demands occur, the pattern change detection (PCD)
mechanism detects changes from the expected behaviour.
Once the type of change is detected, the PCD proposes the
reprediction of the demand based on a similarly previously
encountered pattern found by the SOM component.

A. SOM Classification Component

An anomalous day (24 hour time frame) is normally
detected with 100% accuracy only once it has ended, as
anomalies can occur even at the end of the day (which would
be close to the evening demand peak - a critical point). When
detected as such, these anomalous days can only be of use
at a further date, which is the case at the moment in state
of the art forecasting approaches. Our approach employs self-
organising maps for classification and pattern change detection
of anomalous days before the day reaches its end, and more
importantly before the critical evening peak.

SOMs tend to group similar samples into clusters (also
known as classes). Initial analysis involving a large number
of classes provided disparate clusters due to the relatively low
number of , where grouping of public holidays and anomalous
days was scattered across the map. Bringing the number of
classes down to 4 led to grouping all Irish bank holidays into
a single class, and non-calendar based anomalous days into
another class. The remaining two classes comprise only normal
days. Therefore, we have further employed a self-organizing
map with 4 classes (1a, 1b, 2a, 2b).
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(a) SOM Input/Output (b) SOM Samples Dispersion

(c) SOM Classes Affinity (d) Distribution in Classes

Fig. 2: Self-Organising Map

The input layer of the SOM contains 48 half-hourly mea-
sures of power demand, that is one sample of power demand
recorded every half an hour over the course of a 24 hour
period (one day), as can be observed in Fig. 2a. Once the
dispersion of the samples is established, they are allocated
into the four different classes based on their similarity Fig. 2b.
The four classes share some similarities between themselves.
When looking at Figure 2c, we can see the four different
classes pictured with blue hexagons. The more similar features
between two classes, the lighter the colour representing the
connection between them (elongated hexagons). The total
number selected for each class is shown in Fig. 2d.

Upon inspection, based on the historical load input, we have
observed that the SOM has further clustered samples into:
1a) normal days with higher power demands (cold season);
1b) normal days with lower power demands (warm season);
2a) anomalous days occurring during bank holidays; and 2b)
anomalous days outside calendar based events.

The SOM classifies all the occurring 13 bank holidays in
the given researched interval (between 01-08-2009 and 31-
12-2010) into a single class, together with a few more days
around them, particularly in the Christmas/New Years period.
The most detached class is the one containing only anomalous
days, outside of the holidays range (that cannot be explained
by public holidays or proximity to these holidays), which sum
up to 32 days. As noted in the result section, while some
anomalous days occur in a year (Nov-Dec 2010), they don’t
occur in the other (Nov-Dec 2009). Part of the anomalous
days are around holidays as well, but they have a particular
shape, as some people take days off and some don’t, resulting

in a unique demand pattern. The rest of the days in the
given period are split between the other two classes depending
on seasonality, as seen by the differences between summer
and winter. The lower the daily temperature, the higher the
demand, as many household heating units rely on electricity
in Ireland. During summertime, as temperature doesn’t rise
enough to create discomfort among household users, HVAC
systems are not employed and as a result we have generally
lower power demand patterns.

B. SOM Pattern Change Detection

To deal with anomalous days on the fly, we have developed
a pattern change detection system to provide us with valuable
information about the state of the day (normal or anomalous).
State of the art forecasting approaches that deal with anoma-
lous day prediction employ just a classification component that
post-processes the already passed day. Their assumption is that
the pattern of the passed day can be used at a further date,
possibly same time next year (e.g. for Christmas day).

We considered that the SOM detects anomalous days with
100% accuracy in post-processing mode, when all the days
have ended. Based on previous results, we performed exper-
iments to detect when a trade-off would be sufficient so that
the anomaly detection algorithm reacts faster, with satisfactory
accuracy. The consideration was that at about 50% anomaly
detection rate it’s more likely that a day is anomalous than
not. For this purpose we have initially computed an average
demand shape over 24 hours, with samples taken every half
hour, represented in Fig. 3 by the blue curve. This average
demand is based on all the available historical data from
the smart-meter trial. Note that this shape is much smoother
compared to real day values, pictured in the same figure by a
randomly chosen normal day, highlighted here with red, due
to the averaging process.

According to the SOM, the average shape fits in the upper
two classes (1a and 1b), the ones of normal days. We have then
replaced each value in the 48 element vector representing the
average shape with the ones obtained from the day in progress,
starting from midnight. For example, if the hour is 06:10, we
select 12 values from the actual day from midnight up to and

Fig. 3: Average Shape
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Fig. 4: Detection rates.
Left axis represents total samples, right axis accuracy rates

including 06:00, followed by 36 samples of the average day
representing values between 6:30 up to and including 23:30.

As results show, possible anomalies start to be detected from
8:00AM on. If we look at Fig. 4, we can observe the false
positive anomalies reported by the SOM, pictured here with
a green line. The blue line marks the actual anomalies (true
positives) out of the total possible proposed, as determined
by the SOM at the end of the day. Both the green and blue
lines total number of days are represented on the Y axis on
the left. The red line shows the total accuracy rate, that is
the ratio between the possible anomalies detected which turn
out to be real anomalies over the total number of proposed
anomalies, including false positives. Its values are represented
on the Y axis pictured on the right side of Fig. 4. If we follow
the red curve, we can notice that in the early morning period
(midnight-8AM) a lot of anomalous days (about 10 out of
50) are detected quite accurately (40% accuracy), due to their
particularly different demand patterns over the beginning of
the day. As the time progresses a lot more false positives
appear, due to the seasonality factor, and the overall accuracy
decreases because of the inclusion of these false detections.

The total number of false positives detected starts to sig-
nificantly decrease at 11:00, and at 12:30 we can see that
its representation in the figure, the green line, intersects the
blue line (true positives), meaning that they both share the
same value. At this point we have reached 50% accuracy in
detection, our target. Note that only four and a half hours
were required to reach this level of accuracy, as during night
time the demand tends to be insignificant, thus no anomalies
occurred in our search interval. While this SOM method
sacrifices accuracy for the morning peak, it prepares the
forecasting mechanism for the most critical part of the day,
the evening peak, where the highest demand occurs.

Under specific conditions re-prediction can be accomplished
just by employing a SOM anomaly detection algorithm that
overlaps values on top of the average shape from midnight
up to 12:30, in order to trigger the re-prediction in case it
detects anomalies in demand. Even though at this stage an
anomaly is detected with 50% accuracy, the SOM requires

another 2 hours of demand to properly match the type of
anomaly, after looking into previously encountered anomalous
patterns. Another observation is that, in our samples, the
afternoon/evening period (14:30-23:59) accounts for more than
half of the total energy consumption, more precisely 55%
based on the same results which we have employed for the
average demand shape in Fig. 3. Given that, at 14:30 we
already have 65% detection accuracy, with 98% of the true
positives detected, along with a few more false positives.
However, as seen later in the results section, even if we re-
predict the false positives, this will not effect the forecasting
accuracy much.

At 14:30 we look for a similarly encountered demand in
our database of anomalous days with regard to the demand.
Once the closest match is found, the demand obtained so far
and the rest of the demand belonging to the closest match are
fed into the re-prediction system.

If the possibility of an anomaly is detected after 5 hours of
monitoring, re-prediction occurs. Once the type of anomaly is
detected (based on closest pattern match and requiring another
2 hours for increased accuracy), the reprediction mechanism
proposes the new demand estimate.

Our pattern change detection mechanism requires only 5
hours from the beginning of the day in order to be able
to detect anomalous days with a 50% accuracy rate, which
we regard as important enough to consider the re-evaluation
of prediction for the day in question. Also, by detecting an
anomalous day in the morning we are able to prepare the
microgrid in advance with the change in expected demand
for the mentioned critical evening peak, by far the period of
highest power demand during the day.

C. ANN Prediction and Re-prediction

In our previous work we evaluated several techniques and
combined them in an adaptive hybrid method for increased
accuracy [18], [19]. The mentioned approach is more computa-
tionally intensive than it’s subcomponents and requires several
consecutive normal days to accurately forecast a following
normal day. For the purpose of this work, where dealing with
anomalous days, we have selected for forecasting only one of
these techniques, an improved version of the neural network
component presented in [19]. ANNs don’t require additional
learning once trained, thus forecasting is instantaneous when
input data is provided, a useful feature in critical applications.
The component involves a multilayer perceptron artificial
neural network (ANN) trained through resilient backpropa-
gation. The implementation was accomplished by using the
Fast Neural Network Toolbox [20], which is an open source
software tailored to our own needs.

We have noticed patterns of overfitting in our previous work
when it came to some particular days, therefore we decided
to reduce the total number of neurons in the ANN. While
previously we used 55 neurons for input, we decreased this to
43 to compensate the overfitting issue, as described by Fig. 5.
They are further divided as follows:
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• 24 neurons are used for previous load input (one for each
hour)

• 5 neurons (down from 7) are used for the day code input,
since we deal only with weekdays

• 14 neurons (down from 24) are used for weather forecast
input along the day, 8 for temperature and 6 for humidity;
more inputs were chosen for temperature as it is more
relevant than humidity according to our correlation tests

The neurons in the input layer considered for load, tempera-
ture, and humidity use extrapolated values from samples taken
during a whole day, depending on their correlation level with
the load. The neurons corresponding to the former load each
use two consecutive half-hourly values averaged to represent
the demand over one hour; the neurons corresponding to the
temperature average 3 consecutive hourly values and use the
result as input for each neuron; and the neurons corresponding
to humidity average 4 consecutive hourly values and use the
result as input for each, since they are less relevant than the
load and temperature neurons.

Another change from the initial ANN described in the
previous work occurs in the training process. Due to the
small number of anomalous days in our sample set, we have
artificially increased the training set three-fold by adding
small random variations to the demand for each real day
recorded. The validation and testing set were not affected by
this measure, and comprise only actual recorded demands.

The output layer totals a number of 24 neurons, which
represent the short term load forecast. Each of the output
neurons provides a demand estimate corresponding to the
equivalent hour of the day.

Each prediction is based on the weather forecast for the day
it attempts to predict, together with the historical recorded
demand occurring over the same day of the previous week.
The reason behind choosing the load that belongs to the same

Fig. 5: Neural Network Structure

day of the week for prediction (e.g. previous Tuesday for
predicting the following Tuesday) is that each day of the
week tends to have a particular demand shape in the samples
collected by us from the aggregate of residential users.

For the re-prediction mechanism component, the input part
with regard to the historical load changes to accommodate the
shape provided by the pattern change detection and matching
mechanism. Since the network doesn’t require any more
training at this stage, re-prediction is instantaneous once the
network is provided with the appropriate anomaly matching
input from the SOM. In the case of re-prediction, the first 14
neurons are substituted with the values obtained from the day
in progress up to hour 14, while the last 10 are based on the
closest fit found by the pattern matching mechanism.

IV. RESULTS

In order to test the dynamic forecasting algorithm we have
employed historical electrical demand recorded during a smart
meter trial, which was organized by the Commission of Energy
Regulation in Ireland [21]. The trial comprises anonymised
smart-meter data from both residential and commercial users.
For our microgrid/VPP scenario we have employed only
demand from residential users, aggregating the demand from
230 random households in order to roughly approximate the
demand that goes through a 630 KVA transformer in an urban
area. This is based on a power factor of 0.85 and an over-
sizing factor of 0.5-0.6 for the transformer, considering that
the aggregate demand of the 230 houses peaks at about 350
kW.

The trial recorded half hourly demand over a period of 17
months, during 2009-2010. In order to adjust the prediction
algorithm to seasonality, historical Irish weather information
was also involved, as provided by OGIMET [22]. Our evalu-
ation only considers weekdays, since weekends are a special
case with different daily behaviour from weekdays, and lower
peak demands. Weekdays also have a larger sample dataset
available compared to the weekends, and their power demand
is also greater than the one of weekends when it comes to
the critical evening peaks. The technique would be applicable
on weekends too, but would require a separately trained ANN
and possibly more samples.

In total we have used 370 weekdays, out of a sample of
517 days (weekends and weekdays). Furthermore, the training
and validation sets involve data recorded over one year (260
weekdays), to account for seasonality. Tests were performed
on the remaining 5 months (110 weekdays), due to the time
limitations of the recorded data available. The ANN and SOM
use a normalised version of the actual demand and weather
information.

Forecasting accuracy rates are calculated in normalized root
mean square error (NRMSE), RMSE and MAPE, and are
computed based on the formulas in Eq. 1.
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RMSE =

√√√√ n∑
i=1

(xi − x̂i)2

n

NRMSE =
RMSE

xmax − xmin

MAPE =
1

n

n∑
i=1

|xi − x̂i|
xi

(1)

,where xi the actual value, x̂i the forecasted value, xmax,
xmin the maximum and minimum values from the tested set.

The tests were split into two different categories, mainly
testing the accuracy of prediction during normal days and the
special case with regard to prediction of anomalous days.

Testing the ANN prediction algorithm over normal days
provided us with an accuracy that was quite close to the one
of our hybrid approach, although not surpassing it. Over the
same testing period of 20 consecutive weekdays (months of
August and September), without any anomalous days involved,
we have obtained an accuracy of 2.69% Normalised Root
Mean Square Error (NRMSE), or 4.83% in Mean Absolute
Percentage Error (MAPE), as shown in Table I. For more
details, predictions over 4 consecutive days are pictured in
Fig. 6. The purpose of this work though is to employ the ANN
approach only for the anomalous days, when triggering time
critical re-prediction. This avoids the more computationally
expensive hybrid approach calculations when given such short
notice, such as a few seconds/minutes in the middle of the day.

While in other work results are presented in the non-
normalised RMSE (e.g. [3], [4], [23]), we believe NRMSE
is a better way to compare, as the power demand scale
doesn’t have to be exactly the same as in the other test cases
when comparing accuracy rates. Therefore even offset power
demands (generally represented on Y axis in graphs) would
be comparable with other similarly evaluated demands, when
normalised. Additionally, NRMSE poses a more realistic esti-
mation of error when compared to MAPE at very small scale,
the latter being very strict when it comes to deflections of the
forecast from the true load at low periods of demand (low
morning peaks) while not as strict at periods of high demand
(evening peak). This is evidenced by the high discrepancy in
MAPE (7.59% to 12.04%) from similar values of NRMSE

Fig. 6: Prediction over 4 consecutive days (Aug 2010)

TABLE I: Prediction Accuracy over 20 Consecutive Normal Days
(Aug/Sept 2010)

Method RMSE (kW) NRMSE (%) MAPE (%)
ANN 7.81 2.69 4.83
Hybrid 6.94 2.39 4.55

(7.31% to 7.37%) when comparing whole days from Table II
versus the evening periods in Table III. As a result, we believe
that NRMSE is a more evenly distributed way of evaluating
forecasting accuracy in very small scale and therefore we use
it in the rest of our evaluation section.

Some detailed results are presented in Table II, where
we can see prediction accuracies during normal days versus
anomalous days. These occur in the same time of the year.
Fig. 7 visualises the forecasting accuracy obtained for each
day, between the 10th of November and 29th of December
2010. Note the two periods of anomalies, one in the beginning
of December due to possibly a very cold North Atlantic front.
The second one is due to the Christmas holidays and New
Year’s eve. In the first anomalous period we can observe
that generally the first five days have produced high errors in
forecasting of up to 11% NRMSE in the standalone prediction.
Standalone re-prediction (ANN+REP) tends to reduce this
accuracy error after the anomaly detection, while the SOM
enhanced re-prediction (ANN+SOM+REP) minimizes it to
similar levels as the ones of normal days. After five days the
normal algorithm adjusts itself and starts using the input of
an anomalous day for the prediction of the 6th day. This can
be noticed on the standalone prediction of Monday (the 6th
of December) and Tuesday (the 7th), in Fig. 7.

The anomalous days evaluation was performed over a
whole week (5 consecutive weekdays) occurring at the end of
November and beginning of December. The pure ANN based
prediction algorithm faced significant decreases in accuracy
over that time, with values of 7.37% NRMSE, 12.04% MAPE,
22.18 kW RMSE, which is still an improvement over our
closest related work from the state of the art [4]. While this
might be considered somewhat satisfactory, we believe that
the error is large enough compared to the average obtained by
our normal prediction mechanism to consider the involvement
of re-prediction through pattern matching techniques.

TABLE II: Prediction Error Normal vs. Anomalous Days (Nov/Dec
2010)

Method Normal Days Anomalous Days
NRMSE (%) MAPE (%) NRMSE (%) MAPE (%)

ANN 3.03 5.03 7.37 12.04
ANN+REP 2.83 4.50 5.41 6.49
ANN+SOM+REP 2.81 4.36 3.63 4.71

TABLE III: Prediction Error Anomalous Days: 14:30-23:59 Interval
(Nov/Dec 2010)

Method Anomalous Days
NRMSE (%) MAPE (%)

ANN 8.02 9.68
ANN+REP 7.31 7.59
ANN+SOM+REP 4.84 4.99
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Fig. 7: Anomalous Month

As seen in Fig. 8, the real demand is somewhat higher than
expected. This is actually not the only anomalous behaviour
for the two days presented. Typical features of our aggregated
residential demand include the two peaks that occur in the
morning and early afternoon, before the very high evening
peak. The morning peak is higher in the normal days, but
here we can see a higher demand in the early afternoon peak,
particularly in the second day (Friday).

The pattern change detection and matching mechanism trig-
gered re-prediction over the five anomalous days in question,
bringing down the RMSE to 10.89 kW, from the previous
22.18. (NRMSE 3.63%, MAPE 4.71%). More details can be
seen in Table II, where we also present the results obtained
by ANN+REP, prediction which is accomplished without the
involvement of pattern matching techniques.

The more relevant testing period is occurring after the 14:30
interval though, which is the moment where the fitting re-
prediction is triggered, and therefore it’s the more appropriate
one for comparison. The results obtained are shown in Table
III. During this specific interval (14:30-23:59), the pure ANN
prediction algorithm provides an accuracy of 9.68% MAPE
(8.28% NRMSE) over the anomalous days. ANN+REP (re-
prediction with pattern change detection enabled but with-
out the pattern matching enhancements) achieved 7.59%
MAPE (7.55% NRMSE) in the same given period, while
the SOM enhanced re-prediction, ANN+SOM+REP, reached
4.99% MAPE (5.00% NRMSE). Some of the anomalous days
together with the predictions are presented in Fig. 8.

It is worth noting that, while ANN+SOM+REP has the
better accuracy out of the three evaluated forecasting methods
(ANN, ANN+REP, ANN+SOM+REP), the errors that occur in
its forecasting attempts also tend to be in general overestimates
of the evening peak when compared to the other methods,
which underestimate it. We believe that this is more important,
as it is more relevant towards possible demands that could
reach the transformer’s capacity limits.

The power demand used for forecasting in our evaluation
ranges between 40 kW and 340 kW (depending on the season),
close both in demand patterns and power usage to the one
presented in [4] at distribution substation level. As already
mentioned, it is difficult to compare with the previous work

because of the slight differences in scale. However, for illustra-
tion purposes, we have observed that they have at distribution
substation level a demand which is between 100 and 300 kW
[4]. This is according to the evaluation period presented in
the graphs. This results in approximately 10.72% NRMSE,
with their best considered result of 21.43 kW RMSE obtained
through the auto-regressive (AR) model.

For our previously evaluated months, between August and
September, the demand is actually between 40 kW and 220
kW. Our neural network forecasting algorithm provides a
7.81 kW RMSE over a period of 4 consecutive weeks (20
weekdays), in comparison to their best result of 21.43 kW
RMSE (obtained with AR).

Another interesting test with regard to power demand level
comparisons were forecasting evaluations performed during 2
consecutive weeks (10 weekdays) in November 2010, because
it’s a highly variable period due to the proximity of holidays.
Here the power demands range between 50 kW and 340 kW.
These demand values are close to the ones in the previously
mentioned work [4]. The ANN forecasting algorithm devel-
oped by us provided a RMSE of 9.11 kW. This accuracy
was reached despite the slightly wider range (subject to a
higher RMSE) and the high variability in the given period.
We motivate the variability of demand by the fact that exactly
after this period of 10 consecutive weekdays we have several

Fig. 8
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days marked as anomalous by the SOM, with the weekdays
in question being close or on the borderline of anomalous.
In other systems of measurements, the results were of 5.03%
MAPE, an insignificant decrease in accuracy when compared
to the results obtained over the more settled summer period.

V. CONCLUSION AND FUTURE STEPS

We have presented a new method for adaptive anomaly
detection and re-prediction based on pattern matching tech-
niques. We evaluated this method in the area of small scale
residential electrical demand forecasting, a field of high inter-
est due to the emergence of important smart grid actors such
as microgrids and VPPs.

The results obtained by our method are better than state
of the art approaches in small scale, as shown in the results
section. Even more, as far as we know, this is the only
forecasting approach in small scale that deals with normal
days as well as anomalous days without classification on a
predetermined basis, thus enabling on-the-fly anomaly detec-
tion, pattern matching, and re-prediction techniques in case of
unanticipated anomalous days occurring. We believe that the
electrical demand forecasting results achieved are very good at
residential transformer level, which in our case is considered
to be of up to 350 kW.

We plan to improve our classification techniques in order
for them to be based on seasonality and day of the week
patterns. For such improvements to occur, we need a larger
dataset, one which spans several years, unlike our case which
was limited to 17 months and therefore didn’t allow too much
tinkering in terms of SOM classes. Ultimately, we will connect
our prediction techniques with demand response algorithms.
For this purpose our future work will test demand response
multi-agent systems at household and community level based
on accurate power demand predictions, in order to suit the
limits of the transformer providing power and also optimize
the use of available renewable sources. Furthermore, intelligent
learning techniques involving collaboration should help in
fulfilling primary or critical objectives when combined to
appropriate forecasting techniques. Some of our preliminary
tests already point out the benefits of such multi-agent systems
in demand shifting [24]. Overall, these developments should
all contribute to increased stability of the power system and
a lower carbon footprint through efficient use of renewables,
reduced user costs, and optimal operation of critical systems.
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