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Abstract—Applications such as generator scheduling, house-
hold smart device scheduling, transmission line overload man-
agement and microgrid islanding autonomy all play key roles
in the smart grid ecosystem. Management of these applications
could benefit from short-term load prediction, which has been
successfully achieved on large-scale systems such as national
grids. However, the scale of the data for analysis is much smaller,
similar to the load of a single transformer, making prediction
difficult. This paper examines several prediction approaches for
day and week ahead electrical load of a community of houses that
are supplied by a common residential transformer, in particular:
artificial neural networks; fuzzy logic; auto-regression; auto-
regressive moving average; auto-regressive integrated moving
average; and wavelet neural networks. In our evaluation, the
methods use pre-recorded electrical load data with added weather
information. Data is recorded from a smart-meter trial that took
place during 2009-2010 in Ireland, which registered individual
household consumption for 17 months. Two different scenarios
are investigated, one with 90 houses, and another with 230 houses.
Results for the two scenarios are compared and the performances
of the evaluated prediction methods are discussed.

I. INTRODUCTION

The electrical grid was designed to deliver electricity from
large power plants to the consumers in a three step structure:
generation, transmission and distribution. This system has one-
way flow of electricity and rudimentary one-way communica-
tions. Losses occurring from the generation side up to the user
endpoint amount to approximately 8% of the total generated
electricity, as a result of transmission losses, while only one
third of the fuel is converted to electricity, with the resulting
heat lost [1]. Electricity transmission losses are very low when
compared to heat losses, with the distance rendering heat
transmission towards consumers impractical in case of large
power plants situated in plain field.

The emerging smart grid attempts to solve several existing
problems in the current grid by reducing generation costs,
transmission losses and CO2 emissions, enabling two-way
communications, self-healing and islanding capabilities, and
integrating renewable sources. Distributed generation has a
valuable role in diminishing the distance needed to deliver
electricity, thus reducing the transmission costs. They can also
provide heat towards the users, through means like combined
heat and power (CHP) systems, due to the relatively low
distance to the users when compared to large power plants.
Therefore, microgrids and virtual power plants (VPP) are

Fig. 1: Distribution Network Endusers

emerging as subsystems of the smart grid capable of providing
the electricity needs of their own communities. Self-produced
electricity has three possible flow options: to be consumed
by the community, stored for further use, or to be exported
to the main grid. In order to fully maximize the potential
of microgrids and VPPs, demand-side management (DSM)
has to be implemented for the consumers in applications like
smart household device scheduling. DSM can help in reducing
user and generator costs and CO2 emissions by minimizing
daily peaks and employing the renewable sources available
at that moment. To do that though, plans of the consumers
energy needs for the following day are acquired together with
knowledge of renewable electricity availability from the likes
of solar panels, micro-hydro turbines, wind turbines or CHP
generators.

One of the ways of improving the capabilities of DSM
is demand forecasting. Several different forecasting systems
have been developed to deal with this problem [2]. Although
high precision, as low as 1.97% mean absolute percentage
error (MAPE), has been achieved on large scale (for example
national and municipal level [3]–[6]), microgrid, VPP and
transformer level forecasting has only recently emerged as a
research interest [7]–[10]. The results are not very encour-
aging, with errors ranging from 5.15% MAPE at university
campus level [10], where power demand peaks at 8 MW



Fig. 2: Variables correlation

during the day, up to 13.8% MAPE at village level, where
power demand peaks at 15 kW [7].

For a residential community such as the one pictured in Fig.
1, forecasting needs to be done at transformer level (340 kW
demand peak for a 630 KVA transformer). Such a community
of houses is suitable for a microgrid or a community based
VPP of several dozens of houses that possess renewable energy
sources and battery storage capacity like electric vehicles. The
transformer can disconnect through a circuit breaker (CB) the
community’s access to the main grid in case of anomalies
or blackouts, thus setting the community on islanding mode.
In such cases complete autonomy could be needed, until
reconnection to the main grid is safe or possible.

In order to be able to predict the energy demand for a system
like this, different forecasting methods need to be investigated
on a smaller scale.

II. DESIGN

In this paper we evaluate the performance of a total of
six methods that have been previously successfully used for
forecasting on larger scale. Particular focus has been given to
Artificial Neural Networks (ANN) since they’ve proven very
reliable in non-linear and non-stationary system predictions
[11]. Also a set of three closely-related statistics based lin-
ear prediction methods, auto-regressive (AR), auto-regressive
moving average (ARMA), and auto-regressive integrated mov-
ing average (ARIMA) have been selected for comparison
purposes. Furthermore, two other well trialled methods of
electric load forecasting, Fuzzy Logic (FL) and wavelet neural
networks (WNN), have been evaluated in our scenarios.

Each set of methods uses prediction based on previously
recorded load. ANN, WNN and Fuzzy-Logic approaches
also include weather information, since it is well known
that weather has a considerable influence upon the energy
consumption [12]. The statistical methods rely on time-series
regression in order to make the prediction, thus using only
historical demand records. Weather not only affects the energy
consumption, but also the energy production in the case of
renewable energy sources. A correlation test shows the relation
between the current load and the load of the previous day, the
temperature of the current day and the humidity of the current
day. We can notice from Fig. 2 the high correlation of the

Fig. 3: ANN Structure

current load with the previous load and the forecasted temper-
ature. There is also a significant influence of the forecasted
humidity as well, more prominent in the second half of the
day.

Two different scenarios were devised to test the methods.
The first scenario covers 90 houses, reaching a peak of 140
kW, while the second scenario covers 230 houses, peaking at
340 kW. This is done in order to test the scalability of the
predictive methods, since former evaluations were generally
based on scales of tens of GW [4].

A. Artificial Neural Networks

There are several approaches to day ahead estimation
through neural networks [2], [11]. Some of the most common
are networks with 24 outputs [13], one for each hour based on
a former set of days, and networks with 1 output [14], giving
the prediction for the next hour based on the former ones. The
two approaches were both considered. After running a set of
experiments, results proved better for the 24 output version,
so in this paper focus on the multiple output approach has
been considered. The input of the neural network is based
on the same day of the week as the one we are trying
to predict. In addition to that we have employed historical
weather information together with the forecasted weather for
the predicted day. This involves dry bulb temperature and
humidity. Input contains day of the week information to
represent the five unique weekdays. A three layer multilayer
perceptron was designed.

As we can observe in Fig. 3 we have a total of 55 input
neurons, 24 for the previous load (one for each hour), 12 for
the previous temperature and humidity (6 each), 12 for the
forecasted temperature and humidity (6 each), and 7 neurons
for the day of the week code. The hidden layer has given



Fig. 4: Electricity Demand Decomposition

best results with a set of 15 neurons in our case. The output
layer has 24 neurons, one for each hour of the day, set in
chronological order. This brings us to an overall amount of 96
neurons for the network.

Several learning algorithms were investigated for the neu-
ral network training. Resilient backpropagation (RPROP)
performed the best when compared to QUICKPROP [15],
SARPROP [16] and cascade training, so it was further ex-
ploited for our prediction purposes. Both the input and the
hidden layer have an extra bias neuron for weight adjustment.
The network is fully connected, totalling 1224 links between
neurons.

We have used three sets of data, one for training, one for
validation, and one for testing purposes. The training set is
used for configuring the weights of the neurons based on
the available input in order to reach the desired output. The
validation set takes care of overtraining issues, so that the
neural network will not overfit the network based only on the
selected samples of the desired outputs in the training set.
The testing set is used to check the performance of the neural
network after the training has been accomplished, comparing
the predicted results with the actual values for the forecasted
day. The first set spans over 210 weekdays (70% of total days),
the second over 60 weekdays (20%), and the third over 30
(10%) weekdays. The input layer and hidden layer weight
activation functions were selected based on the best results
obtained for the validation set, in order to avoid overfitting.

B. Wavelet Neural Networks

Due to the very small scale of the load demand used for
prediction, load denoising is a good way of smoothing the
load shape. This eases the training process, as the input for
the neural network has less variation over the long timespan
of one year, thus exploiting the similar samples. The filtering
is part of the wavelet neural network approach (WNN). In
our case the time-series is split into 5 different components,
based on frequency, and the signal component with the highest
frequency is processed in such a way as to retain only the
highest peaks for the denoised curve.

Fig. 4 presents the decomposition process over 30 days. On
the lower left side four unfiltered signals of the total five are

Fig. 5: Neuro-Fuzzy Structure

shown, while on the lower right side we have their filtered
counterpart. We can observe that only the bottom signal is
filtered in order to retain the higher peaks, which are more
significant than the other low level variations.

The same procedure as in the ANN case is used further on
for the forecasting process, except that for input we have the
smoothed version of the load. During the training period the
desired output of the neural network is set to be the unfiltered
load from the forecasted day instead of another smoothed
version.

Our initial tests resulted in lower accuracy when rebuilding
the signal from the two predicted parts, the denoised signal
and the remaining residuals. This is due to the fact that the
residual signal closely resembles white noise. Therefore the
residuals are not further considered for prediction.

C. Neuro-Fuzzy

The concept of neuro-fuzzy systems combines the self-
learning capabilities of ANNs with the fuzzy inferences de-
veloped over historical data. Fuzzy logic inference is able
to rapidly deal with fuzzy uncertain problems. FL prediction
systems have been previously investigated on a smaller scale,
employing in one case a gas turbine of 8.4 MW maximum
capacity [10]. Results when combined with neural networks on
large scale have proven encouraging, with accuracy surpassing
the one of ANNs [17]–[19]. Nevertheless, further research at
microgrid level is needed, the initial results providing quite
inaccurate values in comparison to large scale [20].

For this evaluation we have designed a neuro-fuzzy system
which takes as input the previous day load, next day tem-
perature and next day humidity. Each set of inputs provides
the hour forecast for the following day. The Takagi-Sugeno
[21] method of inference is used. The structure is shown in
Fig. 5. The same three sets for training, validation and testing
from the ANN approach are employed. The FL method outputs
the forecast for each hour of the day based on three inputs:
past load of the same hour of the previous day, temperature
forecast and humidity forecast for the predicted hour. The
neuro-fuzzy network has a periodicity of 24 hours, with each
hour prediction being based on the same hour of the previous
day.

D. Auto-regressive Methods

Statistical auto-regressive methods have been widely used
for time-series prediction for almost half a century, with
ARMA first being presented in [22] and later on popularised
together with ARIMA as Box-Jenkins approaches [23]. The



models are able to analyse random processes and linearly
relate the output of the prediction system based on previous
values of the time-series. The series is decomposed through
a formula that relates individual coefficients with the former
n values. ARMA and ARIMA additionally have a moving
average part, where another set of coefficients is considered
for the moving average model component. While AR and
ARMA deal with weak stationary systems, ARIMA applies
differencing on a non-stationary time series, thus removing
the non-stationary component and treating the result as a
stationary series. Our AR model estimates the following day
based on the previous 6 weeks recorded demand (n = 720),
and uses only one set for training. The ARMA and ARIMA
models both estimate the next day based on only the past
week’s data (n = 120).

III. IMPLEMENTATION

We have evaluated the proposed methods on two different
scenarios. The two scenarios are on different scales in order to
test the scalability of the methods. Further use can be found
when applied to simulations such as the ones presented in
[24] or distribution level load in case of a residential area
transformer.

Our scenarios use information recorded by the Commission
for Energy regulation (CER) trial in Ireland over 17 months
in 2009-2010. The trial recorded half-hourly smart-meter data
from residential and commercial users. In this paper we focus
only on the control set of residential users, whose daily
demand were not affected by electricity price changes over the
day. The samples don’t rely on any type of demand response
and represent anonymous households and apartments.

The first evaluated scenario covers 90 houses and the second
one 230 houses, the last one roughly corresponding to the
number of houses provided for by a 630 kVA transformer.
The estimate was calculated based on several criteria. First
we consider the energy demand of 90 houses which amounts
to a maximum of 140 kW for the highest peak. We take into
account also the capacity losses occurred, such as the one in
Eq. 1.

S = P + jQ

S2 = P 2 +Q2

|P | = |S|| cosφ|
(1)

,where S is the apparent power, P the active power, Q the
reactive power and cosφ the power factor. The power factor
is the decisive element in the conversion of apparent power
towards active power.

Not only is the true (active) power circulation charging
the network, but the reactive power is introducing another
randomly varying line congesting element, different from the
active power variation. Both components of the apparent
power are varying more or less independently. The reactive
power’s origins are the associated inductive elements (coils)
in the home appliances. Until now, as can be seen from the

considered data, only the true power circulation is taken into
account.

Transformers are designed with an overdimensioning factor
of 0.5 from the maximum consumption. Considering a power
factor of 0.85(inductive) and having attained a top maximum
value of 140 kW from the 90 houses scenario over a period
of 1.5 years, the coverage of a 630 KVA should be roughly
340 kW or 230 houses, with respect to the proportions in the
first scenario and the considered reactive power circulation.

Added to this information, we have used hourly recorded
weather data from OGIMET [25] for the same time span as the
smart meter trial. This includes information about temperature
and humidity reported in Dublin. The capital city was selected
as a reference point for having the largest population in
Ireland, assuming most of the surveyed users are from Dublin.

In our evaluation we have focused only on weekdays, due
to the fact that their demand is higher and more unpredictable
than the demand over the weekends. The load demand was
normalized to fit in between 0 and 1 for easier processing in
the case of neural networks, according to the formula in Eq. 2.
The same procedure was applied to temperature and humidity.

1

1 + e
−(x−x̄)
stdev

(2)

For the neural networks methods we have used the Fast Arti-
ficial Neural Network (FANN) Library developed in [26]. The
reason for this choice is that FANN is a highly configurable
open-source tool, written in C/C++, which makes it easier to
adapt the neural network to our needs and employ it in further
experiments.

The AR, ARMA, ARIMA, and Fuzzy Logic approaches
were implemented by employing MATLAB’s System Iden-
tification and Fuzzy Logic toolboxes. Additionally, the load
denoising was accomplished with the help of the Wavelet
toolbox.

IV. RESULTS

The version of each method that reached the best results
according to the normalized root-mean-square error (NRMSE)
measurement, described in Eq. 3, has been selected.

RMSE =

√√√√ n∑
i=1

(xi − x̂i)2

n

NRMSE =
RMSE

xmax − xmin

(3)

,where xi the actual value, x̂i the forecasted value, xmax,
xmin the maximum and minimum values from the tested set.

Tests have been made over a sample of 720 hours, 30
weekdays in between the 20th of August 2010 and the 1st
of October 2010.

A prediction for three days during the test interval is shown
in Fig. 8. Three consecutive days of the week are forecasted
and presented along with the actual load (black colour).



(a) 90 houses

(b) 230 houses

Fig. 6: Methods average

Although in the second scenario we have a smoother, less
noisy shape, the chaotic behaviour of the overall demand is
still noticeable in both cases, with several spikes during the
day, usually a higher one in the early morning and the biggest
one at the very end of the evening. The performance for each
hour of the day for the six methods is presented in Fig.
6. The three statistical methods, AR, ARMA and ARIMA
provide, as expected, very similar results and curve shapes,
with ARIMA the best one out of them, narrowly surpassing
ARMA in accuracy according to results from Table II. ARIMA
is the only auto-regressive method presented due to the curve
similarities of the three regressive approaches. They obtain
the best average results over a 24 hours period, while not
exceedingly accurate in any part of the day when compared
to the other methods.

We can observe from Fig. 6 that during the 24 hour period
there are two critical points that require estimation, where most
of the methods lose accuracy, the morning and the evening
peak. These two points are essential for load scheduling and
peak shaving algorithms, which contribute in reducing the
stress on generators and transmission lines. All the methods
provide quite good results during night time, between 10pm
and 5am.

While the FL method proves to be overall the least accurate
method in both the 90 house and the 230 house scenarios, it
has the best results in the first half of the day, which helps in
providing accurate results for the morning peak (7-9 AM). The

differences are especially noticeable in the 230 house scenario.
However, during the evening peak (5-8 PM) the FL accuracy
decreases noticeably.

The ANN and WNN approaches perform the best before and
during the evening peak, although with significant inaccuracies
occurring along the morning peak area (7-8 AM). The WNN
method outperforms the ANN one for the second part of the
day especially in the 90 house scenario, where there is more
noise added in the evening peak. On a 24 hour basis ANN
obtains better results, especially in the 230 house case. Still,
the two methods follow quite similar curves, more noticeable
in the first scenario where their average results are very close.

Therefore, we could say that the FL and ANN methods
are complementary, the first one providing good results in the
AM interval and the second one having good results in the
PM interval.

The load shapes all follow slightly different patterns be-
tween different days of the week, with an increasing trend
that has been noticed starting from Monday towards Thursday,
and then a sudden drop to the lowest power consuming day of
the week, Friday. In our experiments, unlike in existing work,
where usually there is one morning peak and one evening peak,
we are dealing with two morning peaks and 1-2 evening peaks.
To account for this, the day of the week best predecessor for
forecasting is the same day of the week before instead of just
the day before.



There are also unforeseeable daily shapes such as the one in
Fig. 7, which have a considerable influence upon the overall
performance of the system, increasing the average NRMSE.
In our test sample of 30 days we had 3 such days, all different
from each other and dissimilar from our previously modelled
shapes. We can notice three separate morning peaks and two
evening peaks in the presented figure.

Another observation to be made would be that, compared to
other daily demand shapes such as the one in [8], our scenarios
provide an additional second morning peak, usually lower than
the first. This could be another critical point in the evaluation
of the prediction systems. One potential explanation could be
that in a scenario of thousands of houses the two morning
peaks merge into one, but in our case we are dealing with a
very small scale scenario.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have evaluated six forecasting methods
on two different scenarios. From the obtained results we can
conclude that there is no method that cleary outperforms the
others. Results are ranging from 2.94 NRMSE (ARIMA) in
the 230 houses scenario to 4.24 NRMSE (FL) in the 90
houses scenario. Accuracy proves to be lower than in large
scale tests, due to the added noise and significant influence
of single users over the overall demand. While the regressive
approaches provide the best average results, the FL, ANN and
WNN methods are very good in morning and evening peak
estimation. Peak estimation is an essential part in day ahead
prediction, with systems being developed which focus only
on this topic. On a large scale all the methods are expected to
perform well. However, there is a clear difference in accuracy
between the two scenarios, where every single evaluated
method performs better in the 230 houses scenario, as seen
in Table I. The difference is more than 0.5% NRMSE for
each approach. The increasingly inaccurate results emphasise
the difficulties in very small scale prediction, where noise and
chaotic behaviour have more impact. Compensation between
consumers occurs on a large scale. For scenarios like the 90
house case every single user can influence the overall demand
shape for one day by changing their daily behaviour or by
employing power demanding appliances, thus generating more
noise. A simple on-demand water heater (5 kW) switched on

TABLE I: Scenario comparison

Method NRMSE (%)
90 houses 230 houses

ANN 3.82 3.05
WNN 3.84 3.20
Neuro-Fuzzy 4.28 3.44
AR 3.67 3.05
ARMA 3.61 2.94
ARIMA 3.63 2.93

TABLE II: Methods error
(Case I - 90 houses, Case II - 230 houses)

Hr. NRMSE (%)
ANN WNN FL AR ARMA ARIMA

Scn. I II I II I II I II I II I II
0 2.52 1.94 2.59 2.51 3.73 2.69 2.73 1.96 2.76 1.93 2.76 1.94
1 2.67 1.27 1.92 1.47 1.77 1.44 2.80 1.78 2.23 1.75 2.30 1.77
2 1.58 1.03 1.45 0.97 1.36 0.99 1.60 1.41 1.51 1.24 1.58 1.26
3 2.05 1.25 2.85 1.18 1.72 0.88 2.47 1.32 1.68 0.95 1.72 0.95
4 1.77 1.24 2.19 1.16 1.53 0.83 2.02 1.19 1.46 0.80 1.45 0.80
5 1.95 1.43 2.32 1.38 1.71 1.00 2.04 1.14 1.65 0.89 1.64 0.90
6 4.25 1.67 5.18 1.40 2.51 1.29 2.65 1.61 2.16 1.25 2.15 1.23
7 3.87 2.97 4.15 2.84 3.16 2.32 2.39 1.73 2.66 1.87 2.66 1.88
8 5.98 5.18 5.64 5.11 3.62 2.76 3.73 3.15 3.59 3.10 3.59 3.11
9 4.17 2.83 4.01 2.76 5.21 2.72 3.74 2.97 3.98 2.60 3.98 2.58

10 3.71 2.59 3.43 2.53 4.14 3.40 3.18 2.73 3.27 2.57 3.28 2.55
11 3.84 2.69 3.76 3.07 4.81 2.75 3.48 2.89 3.62 2.60 3.65 2.60
12 5.14 2.74 5.24 3.49 4.35 2.74 3.97 3.37 4.06 2.71 4.08 2.72
13 4.24 3.40 4.39 4.59 5.03 3.13 3.94 3.15 4.41 2.70 4.42 2.70
14 4.54 3.58 4.59 3.36 5.44 3.44 5.04 3.17 5.29 3.06 5.31 3.06
15 3.41 3.23 3.41 3.09 4.65 3.74 3.47 3.38 3.87 3.35 3.93 3.36
16 3.65 1.87 3.45 2.06 4.58 2.50 4.00 2.43 4.08 2.45 4.06 2.47
17 4.66 2.63 3.90 3.19 7.06 5.08 5.14 3.98 5.30 3.98 5.37 4.03
18 4.68 4.42 4.98 4.29 8.76 6.36 6.60 5.27 6.59 5.05 6.64 5.08
19 5.42 5.16 5.64 4.90 8.23 6.26 6.33 5.03 6.33 5.11 6.35 5.12
20 6.04 4.38 5.55 5.89 5.78 5.96 5.48 4.78 4.92 4.73 4.93 4.78
21 4.80 4.13 4.79 3.27 5.51 4.52 4.55 3.79 4.50 3.75 4.56 3.81
22 3.63 3.13 3.62 2.93 4.25 3.88 3.65 3.19 3.50 2.92 3.54 2.98
23 3.05 2.66 3.15 2.71 3.75 2.17 3.11 2.12 3.19 1.92 3.24 1.97

Avg. 3.82 3.05 3.84 3.20 4.28 3.44 3.67 3.05 3.61 2.94 3.63 2.93

at a different time of the day can shift the overall demand with
more that 10% for one hour in the 90 houses scenario.

There are also a few other observations to be made. The
ANN and WNN methods can make day ahead prediction based
on the weather forecast, but depending on the accuracy of the
weather forecast the prediction could be extended by up to
one week ahead with similar results. They rely heavily on
proper weather prediction. The other methods depend only on
the previous load and have prediction range of up to 24 hours
ahead. Performance degrades after that interval. A different
version of the regressive and FL methods could be designed
that considers only the same days of the week, rendering week
ahead prediction plausible, or even increasing the accuracy of
day ahead prediction.

Although on a transformer level scale (second scenario) the
given results are relatively accurate for some of the methods,

Fig. 7: Outlier shape



(a) 90 houses

(b) 230 houses

Fig. 8: Load forecasting over three consecutive weekdays

it is quite obvious that we cannot select one method at the
expense of the others. We either have the choice of good
morning peak prediction (FL), good evening peak prediction
(ANNs), or good overall prediction (ARIMA). Even though
the last case provides us with the best results, it still generates
high errors in the evening peak, a critical point since the
highest power usage of the day is during that time. There
are also investigations to be made upon samples affected by
demand response and by the integration of renewable sources,
which will most definitely influence the daily load shapes and
therefore the accuracy of the methods.

In conclusion, we can only suggest a combination of several
methods in order to provide better overall results than the
ones obtained. On a 24 hour basis there are methods that deal
better with peak times and methods that deal better with low
times. Our expectations are that by using their advantages in
a combined approach the error levels would be lowered to a
practical implementation of very small scale prediction. This
is a topic of further research in the field.
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