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A B S T R A C T

Residential demand response (DR) has gained a significant increase in interest from industrial and academic
communities as a means to contribute to more efficient operation of smart grids, with numerous techniques
proposed to implement residential DR programmes. However, the proposed techniques have been evaluated in
scenarios addressing different types of electrical devices with different energy requirements, on different scales,
and have compared technique performance to different baselines. Furthermore, numerous review papers have
been published comparing various characteristics of DR systems, but without comparing their performance. No
existing work provides an experimental evaluation of residential DR techniques in a common scenario, side-by-
side comparison of their properties and requirements derived from their behaviour in such a scenario and
analysis of their suitability to various domain requirements. To address this gap, in this paper we present four
self-organizing intelligent algorithms for residential DR, which we evaluate both quantitatively and qualitatively
in a number of common residential DR scenarios, providing a performance comparison as well as a benchmark
for further investigations of DR algorithms. The approaches implemented are: set-point, reinforcement
learning, evolutionary computation, and Monte Carlo tree search. We compare the performance of approaches
with regards to energy-use patterns (such as reduction in peak-time energy use), adaptivity to changes in the
environment and device behaviour, communication requirements, computational complexity, scalability, and
flexibility with respect to type of electric load to which it can be applied, and provide guidelines on their
suitability based on specific DR requirements.

1. Introduction and background

Due to steady urbanization, the electrical energy grid is facing significant
changes in the supply of resources as well as in the type, scale, and patterns
of residential user demand. Renewable energy is increasingly used but
several forms of it (e.g., wind, solar) are muchmore variable and intermittent
than traditional supply as they depend on the changing weather conditions.
Electricity demand is estimated to significantly increase due to the increasing
penetration of electric vehicles and electrification of heating. To optimize
residential energy usage in this new set of circumstances, numerous
residential demand response (DR) techniques have been proposed to shift
device usage to the periods of low demand and to coordinate device usage to
avoid peaks. The proposed techniques include a wide range of algorithms,
including but not limited to centralized linear programming [1], quadratic
programming [2], AIMD framework [3], broadcast connection rule [4],
market-based approach [5], particle swarm optimization [6], evolutionary
algorithms [7], reinforcement learning [8], variable charging/connection rate
algorithms [9], expert systems theory [10], and game theory [11].

However, proposed techniques have been evaluated on scenarios
addressing different types of domestic electrical devices (e.g., some use
only electric vehicles while others are agnostic with respect to type of
schedulable device used), on a different scale (e.g., 10 customers in [2],
20,000 in [6]), have assumed different user constraints (e.g., different
electric vehicle charging and departure times), and have compared
technique performance to different baselines. Multiple review papers
have been published comparing subsets of characteristics of DR
systems, but without comparing their performance. No existing work
provides experimental evaluation of multiple algorithms in common
scenarios, using the same simulation environment and same para-
meters, to directly compare the algorithm performance and behaviour
and based on this derive a side-by-side comparison of their properties,
requirements or suitability to various domain and device requirements.

However, no single work can provide a comparison of performance
of all of the proposed solutions, due to such a vast range of algorithms,
and expertise required to design and implement each. To start
addressing this gap, in this paper we select a subset of the proposed
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techniques characterised by the use of self-organizing intelligent
algorithms, and provide such a comparison. We report on our
experiences with their implementation as well as provide quantitative
and qualitative analysis of their performance in a common scenario.
We have selected four commonly used self-organizing DR algorithms,
covering both ends of the spectrum with respect to their architecture
(i.e., both centralized and decentralized approaches are included) and
requiring both one-way or two-way grid communication, or commu-
nication between devices themselves. The different DR techniques
presented are analyzed with respect to multiple perspectives: their
ability to reduce and shift electrical load to off-peak periods, user
utility, scalability, communication requirements, whether intelligence
is situated at device end or at the centralized point (e.g., at the
transformer level), support for multiple performance policies, energy
load data required (current vs. predicted vs. historical), ability to
synchronize energy demand of multiple devices, flexibility with respect
to changing user schedules, and user privacy.

The rest of this paper is organized as follows. Section 2 presents the
details of the algorithms: set-point probabilistic approach, decentra-
lized reinforcement learning approach, evolutionary computation
centralized scheduling, and heuristic search algorithm Monte Carlo
tree search. Section 3 presents the design of the residential DR scenario
in which algorithms have been evaluated. Section 4 presents the
performance of the four algorithms as well as the analysis of their
characteristics, while Section 5 concludes the paper.

2. Residential DR algorithms

2.1. Background

Increasing market penetration of EVs and renewable energy has
resulted in an increased need for flexible demand side management
techniques and DR in particular. Numerous research communities are
undertaking work addressing various aspects of DR, from social
sciences investigating incentives for user uptake, economists addres-
sing the dynamic pricing models, engineering community addressing
aspects of grid operation and control and ICT community addressing
control algorithms. This work has resulted in a vast number of
publications, both presenting individual algorithms specific to certain
parts of grid architecture as well as classification and survey papers.
For the extensive background of the DR techniques used an interested
reader can refer to [12] for DR research challenges and opportunities,
[13] and [14] for surveys and classification of architectural components
required for DR, [15] for the detailed review of different DR scheduling
techniques, communication technologies, and the role of IoT in DR,
and [16] for a particularly extensive review of EV charging strategies,
which is the most commonly used DR use case in literature. The goal of
our paper is not to provide another comprehensive review paper but to
complement existing ones by taking the comparison of a subset of DR
algorithms further by evaluating their performance in a number of
common evaluation scenarios. In this section we provide only a brief
summary of the algorithms evaluated, further detail can be found in
relevant papers.

2.2. Selected algorithms

When selecting algorithms for evaluation we were conscious that
evaluating all different algorithms and their flavours is neither feasible
nor necessary, as long as different broad categories of algorithms were
represented to enable comparison of their main features. We have
analyzed the characteristics of the algorithms presented in the litera-
ture and observed two main category distinctions. First is whether DR
decisions in a community of households are made centrally or on each
individual device/household. The second main difference between
algorithms is whether devices are optimizing only their own utility,
or there is a coordination between devices ensuring utility of other

devices and a community as a whole. For this evaluation, we have
implemented and evaluated one algorithm from each of the combina-
tions of the above two categories, as shown in Table 1. We compare
centralized and collaborative implementation of evolutionary algorithm
(EA), decentralized and collaborative reinforcement learning-based
(RL) algorithm, centralized non-collaborative set-point control (SPC),
and decentralized non-collaborative Monte Carlo tree search (MCTS).
Multiple other intelligent algorithms fall into these categories and
share some of the characteristics of the selected ones, for example,
particle swarm optimisation can be implemented as a centralized
collaborative algorithm similarly to EA, and other game theory
approaches can be implemented as decentralized non-collaborative
algorithms same as MCTS. We here briefly present specific flavours of
the algorithms we implemented before presenting the results of the
evaluation and the analysis. As the most frequently-used example of
DR in literature is synchronisation of charging on electric vehicles
(EVs), we evaluate DR approaches by using a community of EVs, but
also discuss if and how each algorithm can be adapted to different
device types.

2.2.1. Broadcast-based set-point control
A SPC algorithm is based on one-way broadcast communication,

executed centrally (e.g., at a transformer level). SPC calculates the
difference between current load, and the maximum available capacity,
compares it with the number of devices requiring energy use, and
calculates the percentage P of the devices that can be turned on, either
for the full required charging duration [4], or for the duration of the
next time step, such is in [17], whose implementation we base our
algorithm on. The percentage P is broadcast to all devices, and each
device turns on with probability P, ensuring that the sum of the
resulting load stays around the desired target load.

2.2.2. Evolutionary algorithms
Evolutionary algorithms (EA) are a family of optimization algo-

rithms inspired by biological evolution. At each optimization step, a
number of potential solutions is evaluated and those with higher
quality (fitness) are propagated to the next generation. The process
repeats until a suitable/optimal solution is found. EA are used in DR as
centralized scheduling approaches to calculate optimal schedule for a
device or multiple devices (e.g., [7,18]). Our solution is inspired by the
solution presented in [19] and aims to find the optimal schedule to a
number of EVs charging while both ensuring their utility (i.e., achiev-
ing desired battery charge), and keeping transformer load under
specified limits. The solution is deemed collaborative, as when the
schedule for each device is calculated it takes into account the schedule
of other devices and their joint impact on the overall load. A schedule is
calculated once a day, and requires full knowledge of EV arrival/
departure times, battery charge, as well as an estimate of the load for
each time step in the charging window.

2.2.3. Monte Carlo tree search
Monte Carlo tree search (MCTS) is a heuristic search algorithm

widely applied in game playing. At each time step, for every available
action, the game is played-out until the end by selecting random
moves; the quality of the final result of every sequence of actions is then
used to assign weights to the actions taken along the way, to increase
the chance of better moves being selected. Other similar game theoretic

Table 1
Residential DR algorithms evaluated.

Centralized Decentralized

Non-Collaborative Set-Point Control MCTS
Collaborative EA RL
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approaches have been applied in DR, for example in [20] and in [11],
while MCTS itself has been applied in [21] and [22]. Our implementa-
tion is based on Parallel MCTS as presented in [23], where each device
implements its own MCTS process, effectively competing with other
devices for energy usage. We use MCTS as an example of a centralized
non-collaborative approach. The quality of every move is evaluated
with respect to both device utility (i.e., EV battery charge), as well as
overall transformer load in the community. No historical information is
needed for MCTS, as decisions are made by estimating the quality of
actions in the future, but accurate prediction of future baseload is
required.

2.2.4. Reinforcement learning
Reinforcement learning (RL) is an unsupervised learning technique

in which an agent repeatedly tries out actions, receives feedback (in a
form of a reward) on suitability of those actions, and over time learns
the suitability of each available action in each particular state of the
environment. RL is used widely in DR to enable devices to learn the
most suitable time to use the energy [24,25,8]. In order to learn useful
information, extensive interaction with the environment is required, so
RL either needs to learn online, while devices turn on and off during
their operation, or train on historical data. Numerous variations of RL
exist enabling centralized optimization of all devices, decentralized
optimization of individual devices (multi-agent approach), learning for
all policies in a single process (single policy RL) and learning for
multiple policies separately (multi-policy RL). In this paper we evaluate
multi-agent multi-policy RL (and specifically, DWL [26]), and use RL
as an example of a decentralized collaborative approach. We imple-
ment DWL with three system policies: minimize transformer load
(where reward is inversely proportional to transformer load), maximize
individual battery charge (where reward is proportional to battery
charge), and charge during low price period, where agents are
rewarded for charging during low price/load period and punished for
charging during high price periods.

3. Evaluation scenario

In this section we present an optimal EV battery charging schedul-
ing algorithm, which we use as a baseline for comparison of the
selected algorithms, as well as outline the design and details of
scenarios in which we compare them.

3.1. Valley-filling algorithm

As a baseline for the evaluation of the surveyed algorithms, we
implemented a centralized optimal solution using a valley-filling approach
as presented in [27]. While such a centralized scheduling solution is not
feasible in large scale implementations due its computational complexity (it
is NP-complete [28]), it is guaranteed to be optimal with respect to a
defined set of constraints. We aim to optimize transformer load (while fully
meeting vehicle charging requirements), by minimizing the charging cost
function, where the cost is directly proportional to transformer load. The
resulting constrained optimization function is defined as follows:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑ ∑F x x C xmin ( ) = min ( + )
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i

n

ij j ij
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where F(x) is the cost function, n the total number of EVs,m the total hours
available for charging (assuming the same availability schedules for EVs), xij
the charging decision of vehicle i at time j (0 for not charging & 1 for
charging), and Cj the cost of energy at time j. The problem can be solved by
dividing the available time into charging slots, computing the minimum
amount of charging slots required for each EV, and allocating these
charging slots in the periods of low demand. Each EV incrementally
updates the overall demand until all EV charging slots are allocated.

3.2. Simulation set up and parameters

All experiments were performed in an open-source energy simu-
lator GridLAB-D [29], developed by the U.S. Department of Energy at
Pacific Northwest National Laboratory. Experiments were performed
using 90 EVs, and two different values of a required daily mileage for
EVs: 30 and 50 miles. Batteries of EVs simulated have a capacity of 30
kWh and charge at a rate of 1.4kWh. Each household also has other
energy devices forming the base energy usage, so-called baseload,
which ranges from 0.8 kW (during the night) to 3 kW (at peak time),
and is taken from the data recorded in Smart Metering Electricity
Customer Behaviour Trials in Ireland [30].

3.3. Scenarios

The algorithms were evaluated in three different scenarios to assess
their performance in standard conditions, where EV owners allow full
control of their charging to the algorithm and where baseload energy
use is accurately predicted, as well as in conditions where the original
baseload and EV use assumptions do not hold.

Standard Performance Scenario In this basic scenario we evalu-
ated the performance of the algorithms under standard conditions,
where the baseload is accurately predicted and all EVs fully respect the
algorithms' charging decisions, i.e., are fully automatically controlled.

Changes in Environment Scenario In this scenario, instead of a
baseload assumed by the algorithm during training the load pattern is
shifted forward by 2 h, and load is increased by 15% throughout. This
could, for example, be a result of a sudden cold spell and snowfall,
where residents arrive home later than usual due to road and traffic
conditions, as well as having an increase in the energy consumption
once they arrive home, due to increased heating requirements. This
scenario has been designed to evaluate the behaviour of the algorithms
in the unpredicted situations; some of the algorithms are heavily reliant
on predicted load matching the actual load, and we assess whether they
can adjust to baseload changes in real time.

Changes in Device Behaviour In this scenario, a certain number of
EV owners manually override the charging decisions; we simulate a
scenario where 10 out of 90 EVs do not respect assigned charging slots.
This scenario has been simulated to address the fact that not all EV
owners will sign up to the automatic DR, or not necessarily always
adhere to algorithm's decisions in case of emergencies or sudden daily
routine changes. This allows us to evaluate the resilience and adaptivity
of algorithms to changes in EV usage patterns, and resulting changes in
the uncontrollable load.

4. Analysis

In this section we present both quantitative and qualitative analysis
of the algorithms and discuss their performance with respect to shifting
load to off-peak times, but also various implementation and deploy-
ment issues.

4.1. Performance evaluation

We have conducted performance evaluation of the selected algo-
rithms in standard conditions, as well as in conditions in which
underlying conditions (environment and the behaviour of other
devices) suddenly changes Fig. 1.

4.1.1. Standard conditions
We evaluate the standard conditions performance of all algorithms

in two sub-scenarios: where EVs have a 30 mile round trip to complete
during the day (Fig. 2), and a 50 mile round trip (Fig. 3). This varies the
duration of afternoon/nighttime charging that EVs need to achieve.
The goal of the algorithms is to postpone/shift as much of the energy
usage to the nighttime valley period, i.e., to avoid vehicles charging as
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soon as they arrive home. The optimal centralized valley-charging
algorithm (as described in Section 3.1) has been implemented and
shown on the graphs as an indication of how much energy use shifting
is possible while still achieving required battery charge. In the 30-mile
scenario (Fig. 2), we see that all of the energy use for all 90 EVs can be
postponed until the nighttime valley, while in 50-mile scenario (Fig. 3),
peak time charging is required as well, adding about 70 kW to the peak
load.

All of the algorithms, in both 30-mile and 50-mile scenario, filled
the nighttime gap. However, most of them added some unnecessary
charging at the peak time too. In particular, MCTS overcharged the
most at peak-time, resulting in the highest load increase, as well as
failing to utilize the final part of the off-peak period, as EVs were fully
charged by then. EA was the best at achieving the smoothness of the
curve, i.e., the difference between peak-time load and off-peak load was
the smallest. SPC added the least amount of load to the peak period, as
the enforced maximum limit was set at cca 300 kW. Downside of this
however, is that EVs might not end up fully charged especially after a
few days of undercharging, if the specified limit is not sufficient for
required charges for all EVs.

4.1.2. Adaptivity to changes in environment conditions
Fig. 4 shows the performance of the algorithms where charging

actions have been scheduled or learnt assuming a certain baseload,
while a different baseload actually occurred on the specific days. The
graphs show two days with default baseload that behaviour has been
scheduled/learnt based on, while on day three new a baseload has been
introduced. We allowed EA to recalculate full daily schedule based on
new baseload prediction, so it performed as well on day three as on
other days, fully utilizing new shifted off-peak period. MCTS, in
contrast, was not given new baseload prediction (in order to compare
the accuracy of scheduling approaches with respect to quality of
prediction), and, as expected, following its previous fixed schedule

Fig. 1. Demand response system architecture.

Fig. 2. Transformer load: 90EVs, 30 miles round trip.

Fig. 3. Transformer load: 90EVs, 50 miles round trip.

Fig. 4. Transformer load: 90EVs, adapting to baseload changes.
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extended a peak-period while failing to utilize at all about one third of
the off-peak period. This difference shows that scheduling algorithms
can perform as well by recalculating schedules when new accurate
environment information is given, however, if they operate under
incorrect predictions, the performance severely deteriorates. Similarly,
algorithms which learn based on historical conditions, do not adjust as
well once current conditions change; DWL learnt that additional
charging needs to be done during peak period, and therefore extended
the peak period, failing to utilize later available off-peak energy. SPC
also resulted in an additional spike at peak-time; it did eventually
adjust to the new baseload, but as it only adjusts the broadcast
percentage of vehicles to be turned on by a fixed amount at every time
step, the change was gradual rather than instantaneous.

Summary of the behaviour of all algorithms in the presence of the
changing environment (baseload) conditions is shown in Table 2.
Algorithms that pre-schedule the behaviour based on predicted base-
load might perform worse when the baseload changes; recalculating
schedules is possible only if such prediction exists (e.g., in our scenario
in case of EA), which might not always be the case (e.g., in our scenario
in case of MCTS). The algorithms that make decisions based only on
the current load, are able to adjust to new baseloads, i.e., to account for
inaccurate baseload predictions, but that adaptation might not be
instantaneous. For example, SPC is set to only increase/decrease the
broadcast number of vehicles to charge by a fixed amount at each
timestep; therefore the change is gradual rather than instantaneous,
still resulting in additional peak-time increases. Similarly, DWL has,
based on historical data, learnt that for vehicles with high daily mileage
some of the charging needs to be done during the peak-period; as peak-
period in the new environment was longer, DWL charged during the
peak for longer than necessary. Off-peak period was utilized for
charging but not fully, and utilizing it fully would require gradual re-
learning of the new baseload conditions.

4.1.3. Adaptivity to changes in device behaviour
Fig. 5 shows the performance of the algorithms when 10 out of 90

EVs do not respect the schedules or learnt actions. The graph shows the
first two days where all devices obey the instructions, and changes are
introduced on day three. In MCTS, a schedule is calculated for all EVs,

but only some of them respect it. When EVs which acted independently
from MCTS decisions started charging out of sync with the remaining
devices, peak load increased, as the remaining EVs were not able to re-
adjust their schedule. As a result, an additional 3̃5 kW was added at
peak time on top of what MCTS added on days one and two. DWL
showed no significant change in behaviour as behaviours are not
scheduled but react only to existing and predicted load, so the
remaining EVs were able to adjust for the behaviour of devices acting
independently of DWL decisions. Similarly, SPC showed no significant
changes in behaviour as charging decisions are made in reaction to
current load only; independently-acting vehicles were simply treated in
the same way as pre-existing baseload. EA behaviour was similar to
that on day one; 2̃0 kW were added to the peak load, but it cannot be
determined whether that is a result of devices not following the
schedule, or because the algorithm scheduled the charging during the
peak to allow for full battery charge.

Summary of the behaviour of all algorithms in the presence of the
unplanned and unscheduled changes in behaviour of some of the
devices is shown in Table 2. Algorithms where a predefined schedule
was calculated were not able to adjust to changes in the number of EVs
participating in the program and can only do so if the schedule is newly
calculated at each time step in which at least one device deviates from
the schedule (i.e., most likely all steps). Schedules can, of course, be
recalculated when required, and this might be feasible in certain
circumstances when changes are not frequent. Algorithms that react
to current conditions, such SPC and DWL only were able to seamlessly
compensate for independently-acting EVs.

4.2. Characteristics of the algorithms

In the previous section we compared the selected algorithms with
respect to their ability to shift the load to off peak times. However, a
decision to implement a certain algorithm does not only depend on its
performance in a given set of conditions, but also on its additional
characteristics such as ease (i.e., cost) of its implementation and
deployment, its scalability, communication capabilities available in a
given requirement, the amount of device usage data available, its
flexibility with respect to the number of policies that devices imple-
ment, types of devices, and privacy requirements of the users. We
compare those characteristics of the algorithms in this section.

Scalability The size of the residential DR system will have a critical
impact on the selection of the algorithm. As households consume very
little energy compared to the large industrial consumers currently
taking part in DR programmes, energy usage for a significant number
(thousands or tens of thousands) of households will need to be
aggregated and synchronized in order to make an impact on the overall
energy network. For example, to qualify for enrolment in a commercial
DR programmes [31], a user needs to have a minimum of 5 MW peak
consumption, while an average residential consumer in Ireland has a
peak load of ~3 kW [30]. However, in a DR system, a design choice
could be made that such a large system is not managed from a single
point, but could be divided into a fully decentralized solution, or in a
hierarchical solution, where, for example, load on each local transfor-
mer (i.e., roughly 230 households) is managed separately.

By definition, decentralized algorithms will have a greater avail-
ability [32] as the amount of computation per device does not increase
with the number of devices. In RL and MCTS algorithms there is no
central component, each device performs its own calculation and
decision making, so the system can function exactly the same regard-
less of the number of devices. In centralized scenarios, computational
requirements on the central component increase with the number of
devices. The increased complexity is not just the result of more
computationally complex fitness function calculations, but also based
on the data requirements of algorithms. In the EA case, a central
component must have information about daily plans for each of the
EVs, which needs to be transferred to it, as well as taken into account as

Table 2
Adaptivity of algorithms.

Changes in: Environment Device behaviour

SPC gradually adjust seamless adapt
RL/DWL re-learn based on new data seamless adapt
MCTS recalc. schedule with new info recal. schedule at each step
EA recalc. schedule with new info recal. schedule at each step

Fig. 5. Transformer load: 90EVs, 10 not respecting schedules.
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a constraint in the calculation. Scalability becomes increasingly im-
portant if the load and EV travel plans are dynamic; recalculation
might need to be done every few minutes, rendering such approaches
infeasible. In the case of SPC, even though it is a centralized algorithm,
the complexity does not increase with the number of devices, as the
only calculation that is done is dividing the available capacity with the
number of devices.

Communication Requirements. The suitability of an algorithm also
depends on its communication requirements, both to account for the
infrastructure that is physically available, and also to reduce time
requirements and potential security and privacy issues resulting from
increased communication. There are three communication links DR
algorithms might require: communication from the energy provider
(e.g., a transformer or a similar centralized aggregation unit) to the
end-user device (or a household), communication from the end-user
device to the energy provider, and communication between end-user
devices (or households). Requirements for all algorithms with respect
these three communication types are summarized in Table 3. There are
also three main categories of frequency of this communication: once-off
(at the start of the DR scheduling), periodically (e.g., every time there is
a change in baseload, EV requirements, or a number of EVs participat-
ing), or at every decision time-step.

All algorithms surveyed require communication from the transfor-
mer to the end-user, as all algorithms base their decisions on the
current energy usage load (baseload) in the community. In addition in
SPC, that communication is also required to broadcast instructions to
EVs (i.e., charge or do not charge), and in EA it is required to send out a
detailed schedule of charging to the end device (once-off or at every
time step). For RL and MCTS it is only required to inform agents at the
end-user device of the current load in the system.

Communication from the end-user device to the energy provider is
required only for SPC and EA algorithms. In SPC, the centralized
component residing at the transformer needs to know the number of
end-user devices in order to calculate the percentage of them that can
be turned on at the same time, so every new device needs to notify the
provider that they have joined (e.g., EV arriving home) or that they are
about to leave. In EA, the centralized component needs to know
additional information about each end-user device, e.g., for an EV it
needs to know current battery charge as well as desired departure time
and the planned trip duration, in order to calculate required charging
time. As RL and MCTS are decentralized algorithms, no calculation
happens at the energy provider/transformer end, so no information is
sent from the device.

Communication between end-user devices (not necessarily a direct
one, but potentially through a local network, or a web service etc.) is
only required by RL in order to ensure synchronization between end-
device usage, to enable collaboration which prevents all devices turning
on at the same time. However, this communication is optional (and
therefore marked in brackets in Table 3, as RL can also operate in a
non-collaborative mode. In the case of centralized algorithms (SPC and
EA), this synchronization is done by a centralized component, and in
the case of decentralized MCTS, no direct synchronization is per-
formed. Therefore, RL is the only algorithm which requires additional
household to household link. However, this capability allows RL to
provide more fine-grained and adaptive synchronization of end user
device usage, as shown in Section 4.1.

Location of intelligent DR device add-ons. Closely related to

architecture and communication requirements of the algorithms is
their complexity in terms of location and number of additional
specialized DR-enabled devices that need to be installed in order to
enable implementation of residential DR programmes. These devices
range from those hosting intelligent algorithms which do schedule
calculation and learning, to simple devices which can take only on/off
orders remotely in order to turn the participating device on or off.
Table 4 summarizes these requirements for each of the algorithms
evaluated. In the case of centralized implementations, i.e., SPC and EA,
a device capable of running intelligent algorithms (and having com-
munication capabilities as outlined in the previous section) needs to be
installed and operating at the transformer/community level. In the case
of EA, end-user devices need to be equipped only with on/off switches
capable of being remotely controlled by the instructions from the
centralized component. In the case of SPC, end-user devices, instead of
requiring remotely-controlled on/off capability, need to be able to
perform simple calculation which will determine at each timestep
whether device should be turned on or off, based on the broadcast
percentage of the devices that should be turned on at that time step.
Decentralized algorithms DWL and MCTS do not require any addi-
tional equipment on the transformer/community level, but each
participating devices needs to have capabilities to run the intelligent
algorithm which can learn/calculate the schedule for that device.

Financial implications on DR programmes. The discussed com-
plexity and the number of additional hardware devices required for the
implementation of a DR programme, as well as communication links
required, directly influence the cost of its installation and maintenance.
However, estimation of a cost of any DR programme is non-trivial, and
apart from hardware costs, depends on multiple additional factors,
balancing out both the implementation costs and benefits. Economic
analysis of various types of DR programmes has been a subject of
extensive research, alongside the research into technical aspects of
such implementations reviewed here. Such analysis is outside of scope
of this paper, as we focus on technical aspects, but an interested reader
can, for example, refer to [33] for a discussion on DR incentives, to [34]
for sample of analysis of how benefits of different models differ per
region (based on e.g., climate), to [35] for econometrics of real-time
pricing in DR systems, and [36] for an extensive review of economical
impact of DR systems.

Support for Multiple System Goals. Another consideration when
selecting a DR algorithm is how flexible it is with respect to balancing
multiple goals of the DR system and the end user. For example, a
device/household needs to respect a maximum transformer load set by
the energy provider, minimize its own energy cost (by using energy at
off-peak times), and ensure EV battery is sufficiently charged. The
relative priority of these policies might differ at different times and for
different end users. Table 5 summarizes how each of the evaluated
algorithms addresses the possibility of multiple existing in the system.
SPC algorithm is the simplest in that it only aims to implement the

Table 3
Communication requirements.

SPC Rl/DWL MCTS EA

Transformer to device ✓ ✓ ✓ ✓
Device to transformer ✓ X X ✓
Device to device X (✓) X X

Table 4
Additional DR device requirements.

SPC RL/DWL MCTS EA

Transformer Algorithm X X Algorithm
Device On/off device Algorithm Algorithm On/off device

Table 5
Algorithm support for multiple goals.

SPC RL/DWL MCTS EA

Single objective function X ✓ ✓ ✓
Separate policies X ✓ X X
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energy provider policy of not exceeding transformer load, regardless of
end user policies. As such, multiple policy implementations are not
enabled at all. EA and MCTS evaluate each potential next action/
schedule against a fitness function, which encodes the importance of
the multiple goals and their relative priorities into a single function.
The downside of this approach is that the relative priorities between
policies are fixed at design time and are the same at each time step,
which might not always be the case (e.g., a battery policy might
increase in priority as departure time is approaching). MCTS is
implemented separately on every device, so relative priorities of
policies could differ per individual end-user, while in EA, due its
centralized nature, the exact same fitness function is used for all
devices. In multi-policy RL, as implemented as described in Section
2.2.4, relative priorities of policies are specific per end-user and can
change dynamically if policies become “neglected” over time, enabling
additional flexibility. In addition, RL also supports encoding multiple
policies into a single objective function, should that be sufficient for the
desired implementation, matching the functionality of EA and MCTS.

Support for Multiple Device Types. All algorithms presented have been
evaluated on a scenario of charging EVs. This influenced several specific
characteristics to the algorithm - the devices generally required extended
energy use (e.g., it might take 6–8 h in total to charge the battery), but
frequent switching on and off was possible. Other types of devices that have
these characteristics, and that all algorithms could easily port to without
changes, are for example space heating and cooling, and water heating.
Other large household devices, e.g., washing machines, dryers and dish-
washer, have a different set of constraints - they require less overall energy
(e.g., a total of 1–2 h), but generally should not be interrupted during their
operation. All of the presented algorithms could be applied to these types of
devices as well, by changing action granularity, e.g., instead of taking
actions every 15 min, actions could be taken every 1.5 h. Scheduling
algorithms (EA and MCTS) will be affected as the granularity of action
will be different at each device, and this additional information will need to
be taken into account when calculating the schedule, increasing the
complexity of calculation. RL learning time will be affected, as each action
taken is used as a learning experience; by having less frequent actions,
sufficient learning will be spread over more days than with more frequent
actions. SPC would require the least modification to the algorithm; each
device which cannot be turned off at the particular timestep can be treated
as a baseload and it can skip the decision making, without affecting further
timesteps.

Data Requirements. The algorithms presented also differ with respect
to the amount of data they require - some require historical data to learn
on, some base their decisions only on the current information, and some
rely on prediction of the future energy use. Summary of these requirements
is presented in Table 6. SPC makes the decisions only on the current load
and the number of devices which are interested in energy use. Even if
present, due to simplicity of SPC algorithm, historical or future predicted
data cannot be utilized. MCTS and EA, as scheduling algorithms, require
accurate predictions of the future load (up until the departure time of each
EV) to find the most suitable slots for each EV. Similarly, even if historical
data was present, MCTS and EA in their current form are not able to utilize
it. RL needs historical data (or extensive online learning on current data) to
learn the suitable charging actions based on energy use and baseload
patterns. Predicted baseload information is not required for RL, but it has
been shown that RL can further benefit if accurate predictions are available
[26,37].

Collaboration and synchronisation between device behaviours.
Focus of DR programmes is often to even out the energy usage
throughout the course of the day - reducing the afternoon/early
evening peak, and rescheduling non-critical loads to off-peak nighttime
period instead. Achieving this requires a coordination between energy
usage by multiple devices, to ensure that not all of them are turned on
at the same time creating the peak, but evenly spread out in response to
non-reschedulable baseload and usage of energy by other devices. This
coordination can be direct, by devices directly cooperating with each
other and some deciding to defer their use until off-peak period, or
coordinated indirectly by responding to a signal/baseload, or as
directed by the central algorithm. Table 7 summarizes how each of
the evaluated algorithms achieves device use coordination. In SPC,
coordination is achieved by the central controller evaluates the ratio
between devices which require the energy and the available energy
capacity on top of non-reschedulable baseload, and based on this
broadcast the direction to all devices. In EA, exact schedule for all
devices is calculated centrally, so constraints and priorities of all
devices can be taken into account. In MCTS, each device determines
its own schedule, but indirect coordination is achieved by taking
baseload into account (where energy usage of other devices is
incorporated into the baseload, as seen by each MCTS agent). Only
DWL enables direct collaboration between devices, if the communica-
tion link between devices is available, as discussed previously. This
enables devices to learn the importance of energy use for other devices
at each particular time, and yield to them if they have a higher priority
or are nearer to their hard time constraints (e.g., departure time
approaching).

Privacy. All of the algorithms presented require the end user to
share some level of information with the energy provider. Numerous
techniques are being proposed in literature to ensure collection and
analysis of energy usage data does not infringe on users' privacy (e.g.,
[38,39]). The privacy characteristics of the algorithm are closely linked
with the amount of data they require for their operation as well as their
communication requirements; the greater both of these are, the greater
the risk for privacy infringement. SPC requires minimal knowledge
about the end-user devices, i.e., it only needs to know when the device
joins and leaves the system. EA and MCTS require information about
EV arrival time and departure time, as well as current battery charge
and required daily commute charge. However, as MCTS is decentra-
lized that data is not shared with anyone but only used on the local
device, while in EA data for all EVs is sent to the energy provider. RL
does not need information on EV schedules as it bases the decisions on
current battery charge and load, and it does not share any information
with the energy provider, but if it is coordinating usage with other end-
user devices it does need to share some information with them.
However, only non-identifying information on the learning process
(e.g., rewards received at a particular time-step) is shared between a
small number of neighbouring households/devices.

5. Conclusion

This paper presented several residential demand response algo-
rithms recently proposed in the literature, experimentally evaluated
them in a number of common scenarios, and based on their perfor-
mance derived and discussed algorithm properties and characteristics.

Table 6
Data requirements per algorithm.

SPC RL/DWL MCTS EA

Historical X ✓ X X
Current ✓ ✓ ✓ ✓
Predicted X optional ✓ ✓

Table 7
Collaboration between DR devices.

SPC RL/DWL MCTS EA

Architecture Centralized Decentralized Decentralized Centralized
Direct X ✓ X X
Indirect ✓ ✓ ✓ ✓
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Algorithms were broadly categorized into centralized vs decentralized
and collaborative vs non-collaborative ones, and one algorithm from
each combination of categories was selected. Experiments have showed
that all algorithms are able to shift load from peak to off-peak hours,
with different success rates. Adaptivity of algorithms to changes in the
environment and to behaviours of other devices had been evaluated,
showing that scheduling algorithms are not as adaptive as those that
only react to current environment conditions. However, in cases of
discrepancies between historical and current behaviours, scheduling
algorithms can adapt quicker if given accurate environment predic-
tions, than those requiring extensive historical episodes to learn on.
Numerous other characteristics of the algorithms were discussed,
showing that it is not only performance with respect to energy use
that is of importance when selecting algorithm for a particular DR
implementation, but also considerations addressing communication
requirements, data requirements, type of devices supported, and end-
user privacy. A summary of the conclusions is presented in the
Appendix A in Table 8 which can be used as a guide for selecting an
algorithm. Selection of an algorithm suitable for a particular imple-
mentation will likely involve several trade-offs. For example, as shown
in the table, more sophisticated algorithms require more extensive
training data; simple performance optimization can be achieved by SPC
based only on the current load information, but in order to satisfy
multiple policies and preserve privacy requirements (such as with RL),
historic data is also required to enable learning over time. MCTS and
EA can provide improved performance in terms of shifting the peak-
load, as shown in Section 4.1, however they require baseload prediction
information which might not be available. RL and MCTS enable
coordination between devices, which improves the performance, how-
ever, in order for that to be achieved there needs to be a means of
devices communicating with each other (either directly or indirectly),
which adds another implementation requirement.

However, advantages and disadvantages of a particular algorithm
are highly dependant on the specific circumstance in which DR system
is about to be deployed, so we cannot offer a definitive guide on the
most suitable algorithm for specific conditions. For example, the choice
of algorithm first and foremost depends on the goal of a DR programme
- whether it is, for example, to reduce daily peak-usage, to prevent
occasional extremely high peaks which jeopardize grid operation, or
whether it is to respond to availability of renewable energy in real-time
to prevent the need for curtailing. Another factor is how quickly does
the algorithm need to respond to DR requests - whether up-front daily/
24-h notice is available based on energy generation and energy use
prediction, or whether they need to be responsive instantaneously. The
availability of underlying intelligent and communication infrastructure
is also a determining factor, together whether DR actions are provider-
actuated or actuated by the end-user. As already discussed, DR
programmes can also come with different pricing models, need to be
tailored to particular energy patterns, which can, for example, depend
on the climate, and obey given local regulatory rules, all of which
should be taken into account when selecting the best technology for
implementation.

Furthermore, a DR implementation does not necessarily need to
utilize only a single algorithm/approach; multiple algorithms can be
combined to meet the requirements of the particular implementation,
or particular algorithm implementations modified to address specific
shortcomings identified in this paper.
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