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Abstract—Due to steady urbanization, the electrical grid is
facing significant changes in the supply of resources as well
as changes in the type, scale, and patterns of residential user
demand. To ensure sustainability and reliability of electricity
provision in the growing cities, a significant increase in energy
generated from renewable sources (e.g., wind, solar) is required.
However, renewable energy supply is much more variable and
intermittent than traditional supply, as it depends on changing
weather conditions. In order to optimize residential energy usage,
demand response (DR) techniques are being investigated to shift
device usage to the periods of low demand. Currently most
DR approaches focus on traditional DR goals, e.g., reducing
usage at peak times and increasing it at off-peak times. More
flexible and adaptive techniques are needed that can not only
meet traditional DR requirements, but enable just-in-time use of
renewable energy, rather than requiring its curtailment or using
expensive and inefficient storage options. This paper proposes the
use of decentralized learning-based multi-agent residential DR to
enable more efficient integration of renewable energy sources in
the smart grid, in the presence of increased demand caused by
high electric vehicle penetration. We evaluate the approach using
real household usage data obtained from Irish smart meter trials
and data on wind-generated energy from the Irish grid operator.
We discuss advantages of the proposed decentralized approach
and show that it is able to respond to multiple variable wind-
generation patterns by shifting up to 35% of the overall energy
usage to the periods of high wind availability.

Index Terms—demand response, renewable energy, decentral-
ized learning, multi-agent systems

I. BACKGROUND AND MOTIVATION

55% of the world’s population currently lives in cities,

with that figure expected to increase to 66% by 2050 [1].

Such worldwide urbanization is putting increasing strains

on already constrained city resources, presenting threats to

the sustainability of city infrastructures including transport,

energy and water supply, as well as presenting air quality

and therefore health issues. To mitigate some of the effects

of this expansion, European Union (EU) is looking at ways

to make the European cities more climate-friendly and less

energy-consuming by setting ambitious targets for reduction

in CO2 emissions. EU 2050 roadmap [2] outlines the plans

for reducing CO2 emissions to at least 80% below 1990 levels

by 2050. These targets are driving the increasing penetration

of renewable energy sources and electric vehicles (EVs). For

example, in Ireland, it is expected that 80% of electricity will

Figure 1. Intermittency of wind generation

come from renewable sources by 2050 [3], and 60% of new

cars sold in 2050 will be electric [4].

These developments will introduce significant challenges to

the way the electrical grid operates. Greater use of renewable

energy and EVs will drastically reduce air pollution and

associated health care costs, however, at the same time it will

require adaptation of the way electrical grid operates today.

Penetration of EVs will significantly increase daily energy

demand, while energy supply will become more intermittent

and unpredictable with a greater shift towards the use of

renewables. As certain types of renewable energy (primarily

wind and solar) depend on changing weather conditions, they

will not necessarily follow the patterns of daily residential

consumer energy usage and will vary greatly from day to day,

or even from hour to hour. For example, Figure 1 shows the

levels of wind-generated energy in Ireland in January 2014

[5], indicating the high diversity in levels of production over

short period of time.

Analysis of wind-generated energy in Germany shows that

variation between hour to hour in wind generation can be

more than 10% of the installed capacity, and the deviation

between day-ahead prediction of wind-generated energy and

actual generation can reach over 30% [6]. Unpredictability

and variability resulting from integration of wind energy into

electricity systems requires increased efforts to balance and

control the power system. This costs anywhere between 1 and



10 euro per MWh hour of wind-generated energy [7].

Traditionally, achieving balance in the electrical grid be-

tween energy supply and demand was achieved by controlling

the supply side - increasing and decreasing production and

using energy storage. For example, currently, the level of

renewable (mostly wind-generated) energy in Ireland averages

at 20% [8], and wind generation has to be curtailed once

it reaches 50% of the overall energy generation in order to

maintain the stability of the network [9], resulting in significant

amounts of wind energy being wasted.

Recently, the onus on maintaining the balance has been

shifting to the demand side, with demand-response (DR)

programs enabling supply to remain steady while encouraging

consumers to shift their demand from peak times to off-peak

times. Traditionally, DR focused on incentivizing greater usage

during the off-peak times (e.g., during the night), and reducing

the usage during the peak times (e.g., 5-7pm).

To make DR techniques relevant in the scenarios of high

penetration of renewable energy, they not only need to focus

on shifting usage from peak to off-peak times, but they need to

be more flexible and adaptive in order to respond to variable

wind generation patterns. Device usage should be shifted to the

times of high renewable energy availability, while also taking

into account traditional patterns of consumer usage. Even

though they introduce additional demand on the grid, EVs also

present an opportunity for introducing DR programmes, as

their charging times are flexible, as long as user requirements

are met (i.e., as long as the vehicle is charged sufficient

amount by the desired departure time). However, residential

DR programmes introduce additional complexity arising from

the need to manage a large number of devices with a diverse

range of user preferences and requirements. Additionally,

implementation of calculated DR actions needs to be actuated

by the devices promptly, as studies show that even a 30 minute

lag in response results in 72% loss of DR value for the system

[10].

In this paper, we propose that in order to be sufficiently flex-

ible and adaptive to support efficient integration of renewable

energy into a smart grid, DR system needs to be decentralized,

where each device is controlled by an intelligent agent in

charge of its own preferences and schedules, responding to

incentives and signals from the network and cooperating with

other devices to ensure everyone’s requirements are met. This

will enable accurate and timely response to changes in the

wind generation patterns therefore maximizing DR effects.

In our initial work [11] we showed that multiple devices

acting independently using learning techniques can respond

to traditional DR request to shift usage from peak to offpeak

times. In this paper we extend the DR system to include

collaboration between the devices to improve the grid-wide

effect and show that devices can learn to react to availability

of wind-generated energy and modify the usage to follow that

of the highly fluctuating wind-generation pattern.

The rest of this paper is organized as follows: Section 2

surveys the existing approaches to DR. Section 3 introduces

Distributed W-Learning (DWL), the learning algorithm that

underpins our DR approach. Section 4 presents the details of

DWL-based DR approach to maximizing renewable energy

use, while Section 5 discusses advantages of decentralized

DR. Section 6 presents experimental results and their analysis.

Finally, Section 7 concludes the paper, discussing avenues for

further exploration of the proposed technique.

II. RELATED WORK

The need for automated, flexible and dynamic DR tech-

niques has been recognized by the research community and

various techniques have been investigated to shift residential

demand from high demand periods to those of lower demand.

Some of the techniques focus on optimization and shifting

of energy use within a single household, using, for example,

neural networks [12], expert systems theory [13], and linear

programming [14]. A number of approaches aim to centrally

manage the consumption of multiple households within a com-

munity, e.g., [15]. Recently, multi-agent systems, which are

inherently decentralized, have been identified as a promising

DR control approach due do their flexibility, extensibility and

fault tolerance [16]. Several multi-agent approaches have been

proposed in the literature (e.g., [17]), and have been shown

to successfully achieve the desired device energy usage shift.

Increasingly, the role and impact of DR in integration and pen-

etration of renewable energy is being investigated (e.g., [18]).

However, currently proposed DR approaches rarely address

integration of renewables and the consequent need for highly

dynamic device rescheduling. [19] proposes a DR mechanism

for integration of solar power based on scheduling of both

traditional generation sources as well as demand scheduling.

[20] proposes that large-scale integration of renewable sources

can be achieved by aggregation of defferable loads, however,

in their DR solution deferrable load usage is scheduled and

controlled directly by a centralized aggregator. We propose a

DR technique which is implemented only on demand side,

i.e., it does not depend on generation side, and is decentral-

ized, whereby each device/household is in charge of its on

schedule rather than being controlled by the aggregator. The

following sections present this approach, first by presenting

the background algorithm (DWL) used by our approach, and

then the details of the DR technique itself.

III. DISTRIBUTED W-LEARNING (DWL)

DWL [21] is a learning-based algorithm for multi-agent

optimization that enables collaboration between heterogeneous

entities in order to simultaneously satisfy multiple system

goals. DWL is based on Reinforcement Learning (RL) [22].

In DWL, each agent uses a single Q-Learning [23] process to

implement each of its own local goals. In each state of the

environment that an agent can be in, the suitability of each

action that an agent can take is learnt over time, and expressed

as a Q-value. To arbitrate between different policies, an agent

uses W-Learning [24] which learns the relative importance of

agent’s policies. In W-Learning, for each of the states that

each agent’s policy can be in, an agent learns how is the

performance of that policy affected if its preferred action does



not get executed. This difference between the reward that the

agent would receive if its preferred action is executed and the

reward agent receives when another policy’s action is executed,

is expressed as a W-value.

Q-values for state-action pairs, Q(s, a), are updated using

the Formula 1:

Q(s, a) = (1− α)Q(s, a) + α(r + γmax
a′

Q(s′, a′)) (1)

and W(s) are updated according to Formula 2:

Wi(s) = (1−α)Wi(s)+α(Qi(s, ai)−(ri+γmaxQi(s
′, a′i)))

(2)

where ri is the immediate reward received, s is the current

state of the policy, s’ is the next possible state, ai is the current

action, and ai’ is the possible next action for policy i. α

and γ are learning parameters which assign weight to new

agent’s experiences and the rate at which old experiences are

discounted.

In DWL, agents learn Q-values and W-values for all of their

local policies, but all agents also learn Q-values and W-values

for all of the policies that their immediate neighbours im-

plement (so-called remote policies), i.e., they learn how their

local actions affect their neighbours’ performance. At each

time step, each agent considers the W-values for the current

state of each of its local and remote policies. Neighbours’ W-

values can be multiplied by a cooperation coefficient C, to

enable a local agent to give a varying degree of importance

to the neighbours’ action suggestions. A winning action is

selected based on formula 3:

Wwin = max(Wil, C ×Wijk). (3)

Through use of Q-Learning, W-Learning, local policies,

remote policies, and collaboration coefficient, DWL simulta-

neously optimizes multiple policies on multiple agents while

priorities of the policies are respected both locally on the

device, on other devices and requests from the grid are

respected. In the next section we present how is DWL used

in the design of decentralized DR approach.

IV. DWL-BASED DR FOR MAXIMIZING RENEWABLE

ENERGY USE

In our proposed approach, each device enrolled in a DR

program is controlled by an intelligent agent which learns how

to meet its own multiple goals (e.g., charge an EV sufficiently

for the daily journey, save energy costs), grid requests (e.g.,

maximize the usage during high wind-generated energy avail-

ability), and collaborates with other devices to meet their own

goals. This is enabled by each agent implementing a number

of policies using the DWL algorithm. We implement a case

study in a small residential community with deferrable loads,

in this case EVs.

Each EV agent implements three DWL policies:

• P1: Renewable Energy Policy - specifies the maximum

aggregate energy load that the whole community of

Figure 2. DWL-based residential DR

agents should not exceed. This maximum load is variable

and follows the pattern of wind-based energy genera-

tion, encouraging agents to use only renewable energy

where possible. EV agents are given a high negative

reinforcement for exceeding this limit, thereby enabling

EVs to learn to charge only during the periods where

the difference between current transformer load and the

maximum specified load is sufficient to enable additional

EV load.

• P2: Battery Charge Policy - specifies the minimum

charge that EV should achieve. EV agents were given

high positive reward for achieving the minimum battery

charge of 60%. Depending on the length of the daily

journey and required battery charge, this limit can be set

lower or higher. Additionally, agents are given a positive

reward each time a battery charge increased.

• P3: Baseload Policy - which provided agents with the

current baseload information and 24-hour prediction of

the baseload, encouraging EVs to learn to postpone the

charging if the period of low baseload is coming up.

The baseload level maps directly to the price of energy;

high load means price of energy is high, and agents are

encouraged to charge at the lowest possible cost. Instead

of using absolute values for the baseload, we classified

it as “low”, “medium”, and “high”, with respect to the

24-hour load prediction. If agents detect that the current

baseload is “high”, that means that load is high comparing

to what it will be for the remainder of the available

charging period, and agents learn to wait for the lower

price period.

Relative priorities of these policies are learnt based on the

scale of the rewards given in each specific policy. For example,

failing to achieve the required battery charge was punished

the most severely, as that would mean that the EV would

run out of battery on its planned daily trip. It is deemed

preferable to charge at a higher energy price, than not to

achieve the desired battery charge. Due to the flexibility of

DWL implementation of policies, each agent can implement

all of these policies, a subset of them, or any additional

ones. For example, different types of deferrable loads can

be supported - a water heater device might have a policy



specifying desired water temperature, or a washing machine

device might have a policy specifying desired finish time.

Collaboration

In DWL devices collaborate by each device learning how

its actions affect those of its collaborators. For example, a

device learns that it charging at a specific time period might

affect other agents negatively, as it increases overall load in

the neighbourhood and exceeds maximum transformer load,

resulting in all agents receiving negative reward. Therefore,

agents learn to implicitly synchronize their energy usage.

In small scale scenarios, it is feasible for all agents to

collaborate with each other, however in larger communities,

alternative models of collaboration need to be explored. In

our approach, we divide a community in smaller collaborating

sub-communities, where only agents within a community

cooperate with each other.

In the next section we discuss benefits of our proposed

decentralized DWL-based DR.

V. BENEFITS OF DECENTRALIZED DR

DWL-based DR has a number of benefits arising from its

decentralization:

1) Scalability – In centralized approaches a set of in-

structions or a schedule for energy usage is calculated

centrally and sent to end-user devices periodically (e.g.,

[15]), therefore local devices/households are not in

charge of their own schedule. If some of the devices

do not respect the assigned schedule (i.e., their use

is manually overridden by the user), a new schedule

needs to be recalculated and resent to all the devices.

Similarly, a new schedule needs to be recalculated ny

time a new request comes from the grid, or a change in

predicted load/renewable energy supply occurs. DWL-

based approach offers significantly increased scalability

as the decisions are not made at a central point. This

is crucial for timely response to changes in renewable

energy generation, due to financial loses associated with

delayed DR as already discussed.

2) Synchronization of end-user energy usage – A number

of decentralized, cost-saving approaches are being pro-

posed where each household calculates its own schedule

without collaboration with other users (e.g., [25], [26]).

However, aggregation effects of all customers shifting

their demand to low price/low demand periods, poten-

tially resulting in a sudden increase in demand, is not

considered. Agent cooperation and coordination enabled

by DWL can ensure that devices are aware of each

other’s performance as well as ensure grid requests are

satisfied.

3) Addressing multiple and flexible end-user and grid

policies – Individualized goals in DWL approach can

easily be added or removed, activated or deactivated, and

their relative priority changed over time, periodically, or

per user/device. For example, some users will at certain

times prefer cost-saving over comfort. Modularity and

Figure 3. Scenario 1: 9 EVs, wind decreasing at peak-time

flexibility is increased by expressing the goals individ-

ually rather than as a single optimization problem with

numerous constraints (as in the case in, e.g., [25]).

4) Privacy - Numerous techniques are being proposed

in literature to ensure collection and analysis of fine-

grained energy usage data does not infringe on users’

privacy (e.g., [27] and [28]). Decentralized design of

DWL approach ensures consumer privacy is respected,

as the end-user preferences and schedules do not need

to be transferred to a centralized scheduling unit but

are only required locally on each end-user device,

removing the potential for interception and misuse.

Only non-identifying information on the learning pro-

cess (e.g., rewards received at a particular timestep)

is shared between a small number of neighbouring

households/devices.

In the next section we present the design of the experiments

performed to empirically evaluate the suitability of the pro-

posed DWL-based automated residential DR in maximizing

the use of renewable energy by shifting the flexible device

usage to the times of the high availability of the wind-

generated energy.

VI. EVALUATION, RESULTS AND ANALYSIS

This section presents the simulation environment in which

our experiments were performed, scenarios that have been

simulated, results of the evaluation and analysis of the results.

A. Use Case Design

Simulations were performed in two different sets, with 9

and 90 households enrolled in DWL-based DR, each with a

non-shiftable baseload, and with a schedulable EV controlled

by a DWL agent. Experiments were run for 30 simulated

days and split in 2 parts: learning/exploration period, in which

agents were exploring the quality and results of their actions

with respect to their policies, and exploitation period, during

which all agents selected only actions which they have learnt

to be the most suitable for the performance of their own local

policies as well as policies of the agents with which they

were collaborating. Suitable duration of the exploration period

and the learning parameters was determined experimentally,



Figure 4. Scenario 2: 90 EVs, wind decreasing at peak-time

and it was observed that in the scenarios selected, results of

the learning stabilize after ~20 days of learning data. Each

agent was collaborating with 8 of its nearest neighbours (i.e.,

in 9-agent scenario, all agents were collaborating with each

other, while in 90-agent scenarios, agents were divided in sub-

groups of 9). The results presented are from the exploitation

phase. Batteries of EVs simulated have a capacity of 30 kWh

and charge at a rate of 1.4kW. The required daily mileage

is 50 miles. Baseload in each household ranges from 0.8kW

(during the night) to 3kW (at evening peak time), and is

taken from the data recorded in Smart Metering Electricity

Customer Behaviour Trials in Ireland [29]. All experiments

were performed in GridLAB-D [30].

We have run 4 experimental scenarios:

• Scenarios 1 and 2: Devices were given a maximum load

limit which followed the shape of wind-generated energy

and significantly decreased at peak-time. Scenario 1 had

9 households enrolled, and Scenario 2 had 90 households.

• Scenarios 3 and 4: Devices were given a maximum load

limit which followed the shape of wind-generated energy

and significantly increased at peak-time. Scenario 3 had

9 households enrolled, and Scenario 4 had 90 households.

All scenarios were also compared to a so-called greedy, non-

DR approach, where all vehicles were plugged in and started

charging immediately after arriving home, and were charged

continuously until the battery was fully charged.

B. Experimental Results

Results of the evaluation of DWL-based DR in Scenarios 1

and 2 are presented in Figures 3 and 4 respectively, while

results of Scenarios 3 and 4 are presented in Figures 5

and 6. The graphs show recorded transformer load resulting

from all enrolled houses’ baseload and DWL-controlled EVs.

Results of 3 runs of DWL are presented. Each graph also

shows the non-schedulable baseload and the quantity of the

wind-generated energy. Wind generation patterns are based

on values obtained from Eirgrid [5] (Irish transmission system

operator and market operator) and are scaled down to be com-

parable to household usage; they are not representing absolute

wind generation values but the wind generation pattern.

Wind-generated energy decreasing at peak time: We first

examine the results of evaluation in Scenarios 1 and 2, where

wind energy generation decreases in the afternoon, coinciding

with the afternoon peak. DWL agents are tasked with charging

the vehicles fully while using only wind-generated energy.

Agents should therefore learn not to charge at peak-time as

that time the wind limit is almost fully met by the houses’

baseload alone. In 9-household Scenario 1 (Figure 3), a non-

adaptive greedy approach, which charges an EV as soon as

it arrives home, starts charging during the peak baseload

and low availability of wind energy, going over the assigned

load limit by over 35%, fully charging during the low wind

availability, and not utilizing the high wind availability that

follows during the night-time where baseload uses only about

15-20% of the wind-generated energy. On the other hand,

in 9-household Scenario 1, DWL-based devices successfully

shift the usage of all devices to off-peak times, reducing the

overall peak-time low-wind usage by 35% and increasing the

usage during the night-time when wind generation is higher.

The pattern is similar in 90-household Scenario 2 (Figure 4):

greedy approach increases the peak-time low-wind usage by

42%. DWL-based approach also goes over the wind-generated

limit at times (especially DWL run 3), but still successfully

shifts ~20-25% of usage to off-peak high-wind times. The loss

of performance in 90-household scenario is potentially due to

the higher number of devices needing to cooperate with each

other and should be further investigated by exploring different

collaboration settings.

Wind-generated energy increasing at peak time: In Sce-

narios 3 and 4 wind generation increases at peak time and

drops again at off-peak night-time (see Figures 5 and 6).

Traditionally, DR would aim to reduce the device usage at peak

time, however, when the aim is to maximize the renewable

energy usage, which in scenario coincides with peak-time

energy usage, devices use should not be reduced but ever

further encouraged to maximize the available energy. As in the

previous scenarios, greedy non-adaptive approach charges EVs

immediately upon arriving home, and since wind production

is coincidentally high at that time it initially does not go over

the assigned limits in previous scenarios. However, as the wind

starts dropping, the greedy approach still continues to charge

the vehicles, going over desired load limits by as much as

18%. DWL, on the other hand, in both 9-household and 90-

households scenarios adjusts to the reduced wind-generated

energy and leaves the remaining battery charge for low-load

period. This period also has low-wind production, however

base-load only utilizes less than 50% of the available wind-

generated energy, leaving enough room for the EVs to finish

charging. Overall, DWL-based DR shifts about 25% of the

load to off-peak period to ensure wind-energy limits are not

exceeded.

In summary, the results show that DWL-based DR is able

to follow the wind generation patterns and shift device usage

to the periods of high wind generation, or to low baseload

times. It is important to note that DWL agent settings in

all 4 scenarios were exactly the same; no adjustment to



Figure 5. Scenario 3: 9 EVs, wind increasing at peak-time

Figure 6. Scenario 4: 90 EVs, wind increasing at peak-time

policies, rewards, goals, collaboration or learning parameters

was needed, as the approach was able to autonomously adapt

to the change in number of devices and wind-patterns supplied.

VII. CONCLUSION AND FUTURE WORK

This paper proposed a decentralized residential DR ap-

proach which is able to respond to changes in availability

of wind-generated energy and reschedule user devices to the

times of high renewable energy penetration. The approach has

been shown to successfully adapt to multiple wind generation

patterns in both small and large scale scenarios. However, there

is a number of further research issues that should be addressed.

One example is, how can the approach address devices others

than EVs which have different constraints. In addition, the

results of large-scale Scenario 2 suggest that further perfor-

mance improvements could be obtained by exploring different

collaboration mechanisms. Agents could limit or extent the

number of other agents to cooperate/coordinate with, in order

to ensure further renewable energy is utilized.
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