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Abstract—Improving the efficiency of the smart grid, and in
particular efficient integration of energy from renewable sources,
is the key to sustainability of electricity provision. In order to
optimize energy usage, efficient demand response mechanisms
are needed to shift energy usage to periods of low demand, or
to periods of high availability of renewable energy. In this paper
we propose a multi-agent approach that uses load forecasting for
residential demand response. Electrical devices in a household
are controlled by reinforcement learning agents which, using
the information on current electricity load and load prediction
for the next 24 hours, learn how to meet their electricity
needs while ensuring that the overall demand stays within the
available transformer limits. Simulations are performed in a
small neighbourhood consisting of 9 homes each with an agent-
controlled electric vehicle. Performance of agents with 24-hour
load prediction is compared to the performance of those with
current load information only and those which do not have any
load information.

I. INTRODUCTION

Utilizing renewable electricity sources, such as wind power

and solar energy, is key to the sustainability of the electric grid.

As an example, the European Union is committed to meeting a

target of 20% of its energy coming from renewable sources by

2020, and Ireland aims to achieve that goal by having 40% of

its electricity come from renewable sources. However, renew-

able sources have much greater uncertainty than traditional

ones and their availability can change within hours or even

minutes. Storing energy produced by renewable sources is one

of the ways to address this issue, however, encouraging greater

energy usage at times of greater renewable energy availability

could reduce cost and energy losses associated with energy

storage. In order to enable this, accurate prediction of users’

demand is required, which, coupled with the information on

availability of renewable energy, can be used to dynamically

set energy prices reflecting the relationship between current

supply and demand. To take advantage of such highly dynamic

pricing, electrical devices need to be able to autonomously

make decisions about when to turn on or off, while meeting

their operating goals. In this paper we focus on shifting

demand, i.e., demand response (DR), by enabling devices to

learn their operating decisions based on prices informed by

current load as well as load prediction for the next 24 hours.

Availability of renewable sources can easily be integrated into

such a model by further decreasing or increasing the current or

predicted price to reflect not just overall load but availability

of renewable resources as well. Each device is controlled

by a reinforcement learning (RL) agent [1], which learns

Figure 1. Sample electricity usage of a single household

how to meet its goal (e.g., target battery charge for electric

vehicles, desired temperature for heating/cooling systems etc),

by the target time at a minimum possible price. Load on the

transformer is predicted for the day ahead based on historical

load data and weather forecast. Current electricity price and

price for the next 24 hours is sent to RL agents and is

proportional to the predicted load in the system, therefore

encouraging devices to use the electricity during predicted

off-peak price times. Agents also have the information on

the current load on the transformer, to prevent transformer

overload.

The rest of this paper is organized as follows. We first

briefly summarize existing work in the demand response area

in Section II and introduce reinforcement learning which is the

basis of our approach. In Section III we present the design

of the proposed multi-agent system. Section IV describes

evaluation of our approach and presents results while Section

V concludes the paper.

II. RELATED WORK

Consumers do not use energy evenly throughout the day.

For example, in household consumption, there is a morning

peak after inhabitants wake up and are getting ready for

their daily activities, and a large evening peak when they

arrive home, which is followed by very low electricity usage

during the night. Figure 1 shows sample electricity usage

for a household over the period of 3 days illustrating this

pattern (data is taken from a smart meter trial in Ireland). De-

mand response is a modification of the consumers’ electricity

consumption with respect to their expected consumption [2].

For example, if a high usage peak is predicted during the
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early evening period when residential consumers arrive home,

demand response will aim to reduce that peak by encouraging

consumers to postpone their non-essential electricity use (so

called peak clipping [3]). Similarly, if a low consumption

period is predicted, demand response techniques aim to in-

crease the usage at those times, by encouraging consumers to

shift their electricity use from earlier or later peak periods to

that low-usage period (so called valley-filling [3]). Similarly,

in order to encourage greater use of renewable resources,

demand response techniques aim to reduce the usage during

low renewables availability, and increase the usage during high

availability.

A. Current demand response techniques

Effective DR depends critically on price and load forecast-

ing as well as on demand management [4]. Various techniques

have been implemented on the consumer side to shift the

demand from high demand periods to those of lower demand

and have been evaluated on scenarios of differing scales. A

lot of techniques focus on implementation within a single

household, such as backpropagation neural networks (e.g.,

[5]), expert systems theory (e.g., [6]), dynamic programming

(e.g., [7]), linear programming (e.g., [8]), and RL (e.g., [9],

[10]). The issue with single household implementations is that

they do not take into account an aggregate effect of all cus-

tomers shifting the demand to low price/low demand periods,

resulting in a sudden increase in demand and overloads on

the transformer. DR approaches can also be implemented on

a microgrid/community level, e.g., by use of RL in [11], or

evolutionary computing in [3]. These approaches are central-

ized and as such might not be scalable to large communities.

In this approach, local devices/households are not in charge

of their own schedules but schedules are received from the

central scheduling component. DR can also be implemented

on the load generation side by scheduling the generation so

that it meets the required demand as well as scheduling the

consumer devices (e.g., [12]), however such approaches cannot

be used with renewable sources as, for example, wind or

solar energy, cannot be scheduled. Larger scale multi-agent

systems have also been implemented, mainly to coordinate

charging of electric vehicles (EVs), such as those in [13]

and [14], however, these approaches take into account only

current load/price. Our approach will investigate enriching

multi-agent learning-based approaches with the information

on the predicted 24-hour load (i.e., price which is proportional

to predicted load) in order to improve scheduling of devices

within the community as well as optimizing the price within

each household.

B. Reinforcement learning

In this paper, we implement demand response using RL.

RL is a learning technique based on trial and error that

has been researched and applied in control theory, machine

learning and artificial intelligence problems, as well as non-

computer science domains such as psychology. It is considered

particularly suitable for implementation of self-organizing

Figure 2. Reinforcement learning process

optimization behaviours in large-scale systems, as it does not

require a predefined model of the environment, which, due to

the scale and complexity of such systems, is time-consuming

and complex to construct [15]. Q-learning [16] is one such

model-free RL algorithm. Using Q-learning, an agent learns to

associate actions with the expected long-term reward of taking

that action in a particular state. An agent tries an action in a

particular state and observes the next state and the reward it

got for getting to/being in that state. By repeatedly visiting

states and trying out actions, it learns which action is the best

to take in which state, i.e., has the highest value in terms of

long term reward.

Basic RL has been extended both to multi-policy and

multi-agent techniques, to address different requirements of

application domains. In this paper we use W-learning [17] to

address multiple policies on our agents, as the algorithm has

proven scalable in other large-scale environments (e.g., urban

traffic control [18]). In W-learning each policy is implemented

as a separate Q-Learning process with its own state space.

Using W-Learning, an agent learns, for each of the states of

each of its policies, what happens, in terms of the reward

received, if the action nominated by that policy is not obeyed.

This is captured in a so-called W-value; the higher the W-

value, the more important it is for that policy to have its

suggested action executed. An agent then executes the action

nominated by the policy which is going to suffer the highest

loss if its nominated action is not executed, than any other

policy would suffer if their nominated action was not executed,

i.e., the one with the highest W-value.

W-learning has also been extended to a multi-agent tech-

nique, Distributed W-learning [19], which enables collabora-

tion between heterogeneous agents, and as such could be used

in further extensions of our scenario implementations to enable

collaboration. We envisage that this work will be a part of

a larger smart grid simulation implemented as a large-scale

multi-agent system, where devices, households, transformers,

generators, and suppliers are all represented by intelligent

agents optimizing their own behavior but also cooperating to

maintain the optimal performance of the overall system.

III. AGENT AND EXPERIMENT DESIGN

For the purpose of the experiments in this paper we limit the

scope of the system to 9 devices, specifically electric vehicles

(EVs), operating within a neighbourhood covered by a single

transformer, as pictured in Figure 3. At a transformer level,

the pricing agent determines the current and future price of the

electricity for the neighbourhood based on the current load in
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Figure 3. Multi-agent system architecture

the system as well as load prediction for the next 24 hours

as estimated by the prediction agent. The prediction agent

combines various forecasting advantages of the methods show-

cased in [20], where auto-regressive techniques, artificial and

wavelet neural networks, and fuzzy logic are all considered in

a further hybrid approach to day ahead demand forecasting.

The current and predicted price set by the pricing agent is

directly proportional to the load in the system.

Device agents must learn to minimize the cost of their

operation, while ensuring not to overload the transformer, and

ensuring they meet their charging targets. Each EV is capable

of implementing 3 policies, which are turned on and off to

implement different scenarios:

Policy 1: This policy ensures that a vehicle achieves

the desired minimum battery charge. It has information about

the minimum required charge and current battery charge, and

is rewarded as follows: 500 points for achieving minimum

battery charge required to complete the daily journey, 500

points if the battery charge at a given time step is higher than

the one at the previous time step, and negative reward of -

500 points if current charge is not greater than the one at the

previous time step.

Policy 2: This policy ensures that the overall load at the

transformer supplying the whole community is kept within

assigned limits. The limit has been set so as to discourage

vehicles charging during the peak periods of the base load;

if multiple EVs charge during the peak base load period this

limit will be exceeded. The policy has information only on

current load at the transformer (overall for the whole 9 houses

community) and is rewarded as follows: 500 points if the load

is under the set limit, neutral reward of 0 is the load is very

near the limit, and negative reward of -500 points if the load

has been exceeded.

Policy 3: This policy ensures that the vehicles are charged

during the lowest possible load periods available to them

(where lowest load corresponds to lowest price period). It has

the information on the current load as well as on the load

prediction for the next 24 hours. At each time step, the policy

classifies the current load as low, medium, or high, relative to

the predicted load for the next 24 hours. (More precisely, the

policy does not necessarily look at the whole next 24 hours,

Figure 4. W-learning process

but only at the period during which the vehicle can charge. If

the vehicle is scheduled to depart in the next 10 hours, it will

only look at the next 10-hour window). Vehicles are rewarded

500 points if they charge during the low load period, 250

points if they charge during medium load period, and get a

negative reward of -50 points if they charge during high load

period. The difference between this policy and Policy 2 is that

Policy 2 punishes charging at the high load no matter what, and

punishes it with a very high negative reward of -500; Policy

3 accounts for the situation that vehicles sometimes might

need to charge during the peak load as well and it punishes

that behaviour with only -50 points, while highly rewarding

charging at medium and even more so at low load. Therefore,

agents will aim to maximize their reward by primarily charging

during “low” load periods, but will also aim to avoid the

negative reward of -500 by making sure that they do achieve

the required charge, even if that required charge has to be

achieved during “high” load, which is punished by -50 points.

Also, the current load in this policy is expressed as a relative

value (low, medium, high) rather than absolute load as in

Policy 2. This gives agent information on the predicted load

so that, for example, if the current load is “high”, the agent

knows that high is relative to the remainder of the available

charging period, and can therefore wait for the “medium” or

“low” load periods in order to charge.

Note that the load information sent to agents in all policies

can be true load (or actual current electricity price) or just a

pricing signal designed to shift demand to the periods of higher

availability of renewable resources. This design enables the

same agent implementation to be used regardless of whether

devices are connected to the main grid, operate within a local

microgrid, or if the price signal is sent from a renewable source

within the household, e.g., a photovoltaic panel.

Policies 1, 2, and 3 are activated or deactivated in different

combinations to create several evaluation scenarios to investi-

gate influence of different information sets of demand response

(described in more detail in the next section). At each time

step, each of the active policies on each vehicle suggests an

action (whether an EV should charge or not charge at this

time step), and using W-learning (as described in Section II) an

agent decides which action to execute. This process is pictured

in Figure 4.
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IV. EVALUATION

This section presents results from simulations performed

on 9 households, each with a base load and RL-controlled

EV. Experiments were run for 55 simulated days, and split

in 2 parts: learning or exploration period, which lasts for

approximately 80% of the overall experiment duration, and

exploitation period, during which agents were only selecting

the actions they learnt to be good, which lasts for the remain-

der of the experiment duration. Results presented are from

the exploitation period. Vehicles have a battery capacity of 30

kWh and charge at rate of approximately 1.4kW. The required

daily mileage differs in different implementation scenarios and

ranges from 50 miles (requiring about 35% of full battery

charge) to 80 miles (requiring about 50% of full battery

charge). Every 15 minutes each electric vehicle agents makes

a decision whether to turn the charging on or off for the next

15 minute period. Base load in each household ranges from

0.8 kW to 3 kW, based on time of the day, and is taken from

the data recorded in a smart meter trial performed in Ireland

in 2009-2010 [21].
Simulations are performed in GridLab-D [22], and agents

are implemented using the DWL library [23]. Scenarios im-

plemented are as follows:

1) 9 EVs without intelligent control, i.e., charging when

they arrive home until fully charged. This scenario

is used as a baseline to which other approaches are

compared.

2) 9 EVs each implementing Policy 1 and Policy 2 simul-

taneously (i.e., aiming to achieve their desired battery

charge while making sure not to go over designated

maximum load on the transformer)

3) a single EV implementing Policy 1 and Policy 3 simulta-

neously (i.e., aiming to achieve its desired battery charge

while charging during the lowest available load period,

in order to minimize its overall charging cost). In this

scenario mileage required is varied from 50 to 80 miles

in order to vary the battery charge required and hence

the charging duration.

4) 9 EVs each implementing Policy 1 and Policy 3 simul-

taneously (i.e., aiming to achieve their desired battery

charge while charging during the lowest available load

period, in order to minimize their overall charging cost).

In this scenario, as in Scenario 3, mileage required by

all vehicles is varied from 50 to 80 miles in order to

vary the battery charge required and hence the charging

duration.

5) 9 EVs each implementing Policy 1, Policy 2 and Policy

3 simultaneously (i.e., aiming to achieve their desired

battery charge while charging during the lowest available

load period, in order to minimize their overall charging

cost, but also making sure not to go over the designated

maximum load on the transformer).

A. Experimental results
The results presented show our RL approach is suitable

for shifting the demand from peak usage periods to off-peak

Figure 5. RL-based DR: load fluctuations during the exploration and
exploitation stages

ones. Figure 5 shows the load pattern in a single household

implementing Policy 1 and Policy 2 over 55 days (~5000 time-

steps). During the exploration period (~4300 time-steps in the

graph) the load reaches 4.5 kW and goes as low as less than 1

kW, while in the exploitation stage (time-steps 4300 - 5000),

when the agents have learnt to respond to load information, the

maximum load is just over 3 kW, and minimum load is 1.5 kW.

Therefore, the load pattern has been significantly smoothed

out: peak usage was reduced by ~33%, and off-peak usage

was increased by ~50%.

Scenario 1: In Scenario 1 EVs are not controlled by

agents, and we use this scenario as a baseline for comparison

of other approaches.

Scenario 2: Figure 6 compares the performance of Sce-

nario 2 to the baseline Scenario 1. In Scenario 1, where EVs

are not controlled by agents, they start charging immediately

after arriving home at the peak energy demand time, increasing

peak usage to over 40 kW (over 9 households). In Scenario

2, where agents have information on current load, they learn

not to charge during high load periods (as they are heavily

penalized for doing so by a reward of -500 points), therefore

clipping up to ~25% of the overall demand in the neighbour-

hood from peak times. Maximum load during the peak period

in Scenario 2 is 30 kW (over 9 households), while off-peak

usage has been increased from 8 kW in Scenario 1 to 15-20

kW in Scenario 2 (so demand has successfully been shifted

from the peak to off-peak period).

Scenario 3: Scenario 3 investigates the situations in

which the off-peak period isn’t long enough for the EVs to

achieve their desired charge, so agents will need to charge

during medium load and high load periods too. The mileage

required to be completed by a vehicle on its daily journey is

increased from 50 miles (mileage used in Scenario 2) to 70

and 80 miles. If the agent is learning only not to charge during

the high load periods (i.e., it implements Policy 2), it would

postpone all its charging until low load periods, achieving the

charge required for a part of their journey but not a full charge

required for 70 and 80 mile trips, as the off-peak period is

not long enough. To enable agents to learn that in order to

achieve the desired charge they also need to charge during

high load periods (but that they should still fully utilize low
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Figure 6. DR based on current load information - 9 EVs

Figure 7. DR based on predicted load information - a single EV

load periods, if such periods are coming), we extended the

agents’ state space with information about predicted load for

the next 24 hours (i.e., enabled them to implement Policy 3).

In this scenario we performed the experiments only on a single

agent. Results are presented in Figure 7. When a vehicle has

only 50 miles to travel to work, the off-peak period is long

enough for the vehicle to charge the battery to the desired

charge. An agent learns to wait for this off-peak period, as

it, based on current load being classified as “high”, knows

that “low” and “medium” periods are coming. Also, based on

experiences from previous days (40+ days of learning during

exploration period), it knows that this “low” load period is long

enough to achieve the full charge. However, as the mileage

required increases, agents learn that the off-peak “low” period

is not long enough and learn to charge during the peak “high”

periods too. Observe, however, that the off-peak period is still

fully utilized, and that peak charging takes place only for as

long as it is required to supplement off-peak charge in order

to enable a vehicle to complete the required mileage. For

example, to achieve the battery charge required for a 80 mile

journey, the full duration of the low load period is utilized,

but also a few hours during the peak period. For a 70 mile

journey, the full duration of the low period is utilized, and

only an hour of the high load period. An agent was able to

achieve this balance as its punishment (i.e., negative reward)

is higher for not achieving required battery charge (- 500 in

Figure 8. DR based on predicted load information - 9 EVs

Policy 1), than its punishment for charging during high load

period (negative reward of -50 in Policy 3).

Scenario 4: Scenario 3 presented results of demand

response using load prediction on a single agent. However, the

issue arises when all EVs need to complete a large mileage,

and all learn that they need to charge during peak times to

achieve the desired battery charge (i.e., when numerous EVs

implement Policy 3), significantly increasing the load at peak

times. Figure 8 presents the results of Scenario 4, where all

EVs are provided with predicted load information. All EVs

learn to secure their “top-up” charge at the start of the peak

period, to make sure that required charge is achieved, thereby

increasing the early evening peak by over 50% from base load.

As observed in Scenario 3, vehicles need to charge for a certain

length of time during the peak period, however, as they only

need to charge for about a third or a half of the peak period,

rather than the whole duration of it, ideally charging should be

spread out. For example, in the case of the 70 mile scenario,

all vehicles charge at the start of the peak-period increasing

the overall load by 15 kW from the base load for about half of

the peak period, following which load drops only to the base

load levels for the remainder of the peak period. Agents should

be able to learn to spread out their charging, i.e., should also

be implementing Policy 2, which puts the maximum limit on

the transformer and making sure overall load does not exceed

it. We re-introduce Policy 2 in Scenario 5.

Scenario 5: In Scenario 5, we enable EVs to learn when

to charge both based on the information on current load (as

in Scenario 2), and based on predicted load information (as

in Scenario 4). Therefore, in this scenario, agents implement

all 3 policies: Policy 1, Policy 2, and Policy 3. Results are

graphed in Figure 9. By re-introducing Policy 2, i.e., setting

a maximum limit at the transformer and punishing agents for

exceeding it, we hoped to enable agents to learn that, even

if they have to charge during the peak times, to spread out

that charging so that not all of them charge at the same time.

This has been achieved to some extent, the maximum load on

days 2 and 3 pictured in Figure 9 is 35 kW, comparing to

40 kW in Scenario 4, however, on day 1, maximum load in

this scenario reaches 40 kW as well. The reason for this is
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Figure 9. DR based on current and predicted load information - 9 EVs

that there are 9 agents affecting the environment, and each

is only aware of its own actions. However, it receives the

information on the current load from the transformer, which

incorporates the load created by all 9 agents, and gets rewarded

or punished based on that overall load on the transformer,

i.e., for the actions of all other agents as well. We believe

further improvements in decreasing peak load can only be

achieved through introduction of the collaboration between

agents, which will be the subject of follow up work.

B. Evaluation Summary

Results presented in this paper show that RL is a suitable

technique for residential demand response. EVs are controlled

by RL agents and given different sets of information to

evaluate how they can be influenced to minimize their charging

price, achieve desired battery charge and keep transformer load

under designated maximum load, by shifting their charging

from high load to low load periods. Results show that giving

agents information on the current load is able to reduce

the peak-charging by ~33%, by punishing them for charging

during high load. However, in order to achieve desired battery

charge agents sometimes need to charge during the high load

as well, and are therefore provided with the information on 24-

hour load prediction as well. Agents can then learn to charge

only for the minimum required amount of time during the high

load, and wait for low load periods for the majority of their

charging period. As agents also get rewards for the overall

load at the transformer, which is influenced by all agents

in the system, we believe that further improvements on the

results obtained here can be achieved by introducing agent

collaboration.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes a multi-agent RL-based approach to

demand response, using information on current load as well

as 24-hour load prediction to shift demand to periods of low

demand or high availability of renewable resources. Results

show agents successfully learning to shift neighbourhood de-

mand to the off-peak periods based on providing them current

load information and load prediction for the next 24 hours. We

envisage this work to be part of a large-scale multi-agent smart

grid simulation, and will therefore be further extended, in the

first instance, to include collaboration between EV agents to

obtain further improvements in demand shifting. The multi-

agent system will also be extended to include scheduling and

learning on other types of devices (e.g., heating and cooling

systems), to incorporate load priority and introduce supply

agents (e.g., those controlling wind turbines). Load prediction

will also be further investigated as it will need to account for

the changes in demand based on demand response achieved

by RL agents.
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