Research Interests

I am currently researching machine learning based distributed control solutions for dynamic environments. My research interests include reinforcement learning, neural networks, multi-agent systems, predictive analytics, telecommunications, smart grids, microgrids and energy demand forecasting.

Education

2016

March **Research Fellow**, CONNECT Research Centre for Future Networks and Communications, School 2016–present of Computer Science and Statistics, Trinity College Dublin, Dublin, Ireland.

- November **Postdoctoral Researcher**, *Distributed Systems Group, School of Computer Science and Statis*-2015–March *tics, Trinity College Dublin*, Dublin, Ireland.
- 2011–2015 **PhD. Student**, *Distributed Systems Group, School of Computer Science and Statistics, Trinity College Dublin*, Dublin, Ireland.
- 2008–2010 Masters of Science in Engineering, Aalborg University, Denmark, Grade: 7.9, Scale of -3 (unacceptable) to 12 (excellent).

Focus on Signal processing with specialisation in GPS Technology

- 2008–2009 Erasmus Exchange Student, Aalborg University, Denmark.
- 2005–2009 **Bachelor in Telecommunications**, *"Transilvania" University of Brasov, Average Grade: 9.42,* Diploma Thesis Grade 10, Scale of 1 (insufficient) to 10 (excellent). Faculty of Electrical Engineering and Computer Science
- 2001–2005 **Baccalaureate Diploma**, *"Unirea" High School Brasov*, Grade: 8.89, Scale of 1 (insufficient) to 10 (excellent). Focus on Mathematics-Computer Science, Intensive English

PhD Thesis

Title Prediction-Based Multi-Agent Reinforcement Learning in Inherently Non-Stationary Environments Supervisors Ivana Dusparic, Siobhán Clarke

Description My research focuses on improving multi-agent reinforcement learning performance in non-stationary environments by predicting future environment behaviour. My research is in the area of smart-grids/microgrids, where I'm employing energy demand forecasting techniques for demand side management algorithms.

Master Thesis

Title Improving the Position Accuracy with DGPS and EGNOS

Supervisors Professor Kai Borre

Description The thesis presents a study on techniques involved to increase GPS accuracy. A fusion of DGPS and EGNOS is employed towards obtaining more accurate location results.

Academic Experience

- 2018 **Teaching**, *Complex Systems Science for Communication Networks*, Machine Learning Applications Submodule, Trinity College Dublin.
- 2017-2018 Supervision, Final Year Project, Business Computing, Dublin Institute of Technology.
- 2016-2017 Supervision, Final Year Project, Electronic and Electrical Engineering, Trinity Colelge Dublin.
 - 2016 **Teaching**, Artificial Intelligence (AI and agents), Trinity College Dublin.
- 2014-2015 Teaching Assistant, Introduction to Programming (Java), Trinity College Dublin.
 - 2014 Teaching, Computer Networks, Trinity College Dublin.
- 2012-2014 **Demonstrating**, C++, Java, Processing, Trinity College Dublin.

Awards and Grants

- 2018 **Co-Author**, Science Foundation Ireland and National Science Foundation China Collaboration. CONNECT partnership with Tsinghua University, Beijing, under grant 17/NSFC/5224: Smart Networking in the Era of AI. Overall funding awarded to CONNECT: 747,000 euro.
- 2018 Recepient, Royal Irish Academy Charlemont travel grant

Research Projects Involvement

- 2018 Work Package Leader, Science Foundation Ireland and National Science Foundation China Collaboration project, CONNECT partnership with Tsinghua University
- 2016-2018 **Technical Lead**, Huawei Sweden Fully Funded Project for CONNECT: Self-learning in Radio Resource Management

Professional Experience

2010–2012 **Researcher in Electronics and Telecommunications**, TEHMIN BRASOV S.R.L.. Worked on Passenger Information Systems (PIS), and was responsible for developing and implementing

a train tracking system in real-time over the Internet. The last project I worked on involved PIS and diagnose for trams and in particular location-aware information.

Internships

2008 Internship in Telecommunications, PSE Siemens, Brasov, Romania.

Certificates

- 2018 Deep Learning, a 5-course specialization by deeplearning.ai, Coursera.
- 2017 Machine Learning by Stanford University, Coursera.
- 2010 Certificate in Automation Systems, CANopen, CAN-Powerline, Selectron Systems AG, Lyss, Switzerland.
- 2010 Certificate for Passenger Information System (PIS) Training, *EKE-Electronics Ltd.*, Espoo, Finland.
- 2004 **IELTS Certificate in Advanced English**, University of Cambridge Examinations.

Skills

Programming C, C++, Java, Processing, Python, Matlab, Android, Keras, Tensorflow

- Research Machine Learning (Reinforcement Learning, Neural Networks), Multi-agent Systems Topics
 - Others LATEX, Adobe Photoshop

Languages

Romanian Native English Fluent German Basic

Interests

Traveling, Trekking, Sports: Football, Skiing, Reading: Science Fiction, Fantasy

Publications

- 2018 A. Marinescu, I. Macaluso, and L. A. DaSilva. A multi-agent neural network for dynamic frequency reuse in LTE networks. *Workshop on Promises and Challenges of Machine Learning in Communication Networks (ML4COM), ICC IEEE*
- 2017 A. Marinescu, I. Macaluso, and L.A. DaSilva. System Level Evaluation and Validation of the ns-3 LTE Module in 3GPP Reference Scenarios. ACM International Symposium on QoS and Security for Wireless and Mobile Networks (Q2SWinet17)

I. Dusparic, A. Taylor, **A. Marinescu**, F. Golpayegani and S. Clarke. Residential demand response: Experimental evaluation and comparison of self-organizing techniques. *Renewable and Sustainable Energy Reviews*

A. Marinescu, I. Dusparic, and S. Clarke. P-MARL: Prediction-Based Multi-Agent Reinforcement Learning for Inherently Non-Stationary Environments, *ACM Transactions on Autonomous and Adaptive Systems (TAAS)*

2015 A. Marinescu, I. Dusparic, A. Taylor, V. Cahill and S. Clarke. P-MARL: Prediction-Based Multi-Agent Reinforcement Learning for Non-Stationary Environments, *ACM Proceedings of the* 2015 International Conference on Autonomous Agents and Multiagent Systems (AAMAS)

I. Dusparic, A. Taylor, **A. Marinescu**, V. Cahill and S. Clarke. Maximizing Renewable Energy Use with Decentralized Residential Demand Response, *IEEE International Smart Cities Conference* (*ISC2*)

2014 A. Marinescu, I. Dusparic, C. Harris, V. Cahill and S. Clarke. A Dynamic Forecasting Method for Small Scale Residential Electrical Demand, *IEEE International Joint Conference on Neural Networks (IJCNN)*

A. Marinescu, I. Dusparic, C. Harris, S. Clarke, and V. Cahill. A hybrid approach to very small scale electrical demand forecasting, *IEEE Innovative Smart Grid Technologies (ISGT)*

C. Harris, I. Dusparic, **A. Marinescu**, S. Clarke, and V. Cahill. Set Point Control for Charging of Electric Vehicles on the Distribution Network, *IEEE Innovative Smart Grid Technologies (ISGT)*

2013 A. Marinescu, C. Harris, I. Dusparic, S. Clarke, and V. Cahill. Residential electrical demand forecasting in very small scale: An evaluation of forecasting methods, *IEEE International Workshop* on Software Engineering Challenges for the Smart Grid (SE4SG)

I. Dusparic, C. Harris, **A. Marinescu**, V. Cahill, and S. Clarke. Multiagent residential demand response based on load forecasting, *IEEE Conference on Technologies for Sustainability (SusTech)*

2010 **A. Marinescu** and D. Catalin. Towards improving positioning with the use of DGPS and EGNOS, *IEEE International Symposium on Electronics and Telecommunications (ISETC)*